Strumentazione Biomedica II

Seminario:

Radar UWB per il monitoraggio remoto dell'attività respiratoria

Erika Pittella

Sommario

- Struttura del radar UWB
- Modello circuitale
- Progetto dei sottosistemi
- Realizzazione dei sottosistemi
- Risultati
- Assemblaggio e test del radar UWB completo
- Salute dell'uomo
- Sviluppi futuri

Struttura del radar UWB

Schema del sistema radar

Implementazione del modello

S. Pisa, P. Bernardi, M. Cavagnaro, E. Pittella, E. Piuzzi, "Monitoring of cardio-pulmonary activity with UWB radar: a circuital model", Proc. 2008 Asia-Pacific Symposium on EMC & 19th Int. Zurich Symp. on Electromagnetic Compatibility, Singapore, pp. 224-227, May 2008.

Modello della sorgente

- La sorgente è stata simulata all'interno del CAD attraverso un generatore che consente di inserire i vari tipi di forme d'onda di interesse.
- L'impedenza interna della sorgente è stata assunta pari a 50 Ω .

Modello della Radar Cross Section

Convalida numerica

MWS: Microwave Studio by CST

✓ OTTIMO ACCORDO TRA SIMULAZIONI EM E MODELLO CIRCUITALE

E. Pittella, P. Bernardi, M. Cavagnaro, S. Pisa, and E. Piuzzi, "Numerical and Experimental Validation of a Circuital Model of a UWB Radar for Breath Activity Monitoring", in Abstract Collection of BIOEM 2009 Davos (Joint Meeting of the Bioelectromagnetics Society and the European BioElectromagnetics Association), Davos, Switzerland, paper P-217, June 2009.

Set-up sperimentale

Convalida sperimentale

✓ BUON ACCORDO TRA MISURE E MODELLO CIRCUITALE

E. Pittella, P. Bernardi, M. Cavagnaro, S. Pisa, and E. Piuzzi, "Numerical and Experimental Validation of a Circuital Model of a UWB Radar for Breath Activity Monitoring", in Abstract Collection of BIOEM 2009 Davos (Joint Meeting of the Bioelectromagnetics Society and the European BioElectromagnetics Association), Davos, Switzerland, paper P-217, June 2009.

Modello dell'uomo - RCS (1/2)

VISIBLE HUMAN (VH) MODEL

Height Weight SUBJECT IN THE VH 103 ka 188 cm **RESTING STATE (RS)** X Scaled 188 cm 80 kg VH **END OF THE END OF THE EXHALATION PHASE** INHALATION PHASE Inhalation Exhalation Diaphragm $500 \, cm^3 \, (TB)$ $l_{EX} \cong 3800 \ cm^3$ $l_{IN} \cong l_{EX} +$ $860 \, cm^3 \, (DB)$ [Marieb 2007]

Due nuovi modelli di uomo

• TIDAL BREATH (TB) + 500 cm³ • DEEP BREATH (DB) + 860 cm³

Modello dell'uomo - RCS (1/2)

Radar System", in Atti XVIII RiNEm Benevento, Italy.

Risultati RCS

Segnale ricevuto con il modello

Rispetto delle maschere di emissione

Progetto della sorgente UWB

- ✓ Impulso Gaussiano
- ✓ Monociclo
- ✓ Derivate di ordine superiore

Impulso Gaussiano

Monociclo

Schematico circuito

Schematico layout

Monociclo

Monociclo con corto circuito

Derivate di ordine superiore

21

Realizzazione

Circuito realizzato

Tecnica fotolitografica

- a) Si disegna una maschera (geometria del conduttore)
- b) La maschera viene riportata su un film plastico che deve bloccare la luce ultravioletta nelle zone del conduttore (maschera positiva)
- c) Si stende un sottile strato di fotoresist sulla superficie del rame (tipicamente 0.5 μm). Il fotoresist è un materiale che si modifica se esposto alla luce ultravioletta
- d) Si poggia la maschera sul fotoresist e la si espone alla luce ultravioletta
- e) Si toglie la maschera e si pone la piastra in un liquido sviluppatore che elimina il fotoresist che è stato esposto alla luce ultravioletta
- f) Si pone la piastra in un bagno sviluppatore (normalmente cloruro ferrico) che provoca la rimozione del rame dove non è protetto dal fotoresist. Si pone la piastra in un solvente (fissatore) per rimuovere il fotoresist non esposto

Set-up Misure

LeCroy SDA 100 GHz

Impulso Gaussiano

Monociclo con linea in corto

Monociclo con C

Progetto dell'antenna

E. Pittella, P. Bernardi, M. Cavagnaro, S. Pisa, and E. Piuzzi, "Design of an UWB antenna to monitor cardiac activity", in *Proceedings* of the 26th Annual Review of Progress in Applied Computational Electromagnetics, Tampere, Finland, pp. 564-568, April 2010. 28

Fidelity

$$F = \max_{\tau} \frac{\int_{-\infty}^{+\infty} i_1(t) s_2(t+\tau) dt}{\sqrt{\int_{-\infty}^{+\infty} i_1^2(t) dt} \sqrt{\int_{-\infty}^{+\infty} s_2^2(t) dt}}$$

• i₁(t) segnale ingresso

• $s_2(t)$ componente E_{θ} a distanza d = 100 mm dalla antenna per diverse direzioni

Probe position (xy plane)	Fidelity $i_1(t) = s_1(t)$	Fidelity $i_1(t) = ds_1(t)/dt$	Probe position (xz plane)	Fidelity $i_1(t) = s_1(t)$	Fidelity $i_1(t) = ds_1(t)/dt$	
$\theta = 90^{\circ} \phi = 0^{\circ}$	0.947	0.983	$\phi = 0^{\circ} \theta = 0^{\circ}$	0.700	0.706	
$\theta = 90^{\circ} \phi = 30^{\circ}$	0.961	0.964	$\phi = 0^{\circ} \theta = 30^{\circ}$	0.825	0.767	
$\theta = 90^{\circ} \phi = 60^{\circ}$	0.964	0.975	$\phi = 0^{\circ} \theta = 60^{\circ}$	0.948	0.964	
$\theta = 90^{\circ} \phi = 90^{\circ}$	0.925	0.928	$\phi = 0^{\circ} \theta = 90^{\circ}$	0.925	0.983	

High Fidelity

E. Pittella, P. Bernardi, M. Cavagnaro, S. Pisa, and E. Piuzzi, "Design of an UWB antenna to monitor cardiac activity", in *Proceedings* of the 26th Annual Review of Progress in Applied Computational Electromagnetics, Tampere, Finland, pp. 564-568, April 2010. 29

Ritardo di gruppo

$$u_g = -\frac{\partial \varphi(\omega)}{\partial \omega}$$

• $\varphi(\omega)$ risposta in fase

E. Pittella, P. Bernardi, M. Cavagnaro, S. Pisa, and E. Piuzzi, "Design of an UWB antenna to monitor cardiac activity", in *Proceedings* of the 26th Annual Review of Progress in Applied Computational Electromagnetics, Tampere, Finland, pp. 564-568, April 2010. 30

Realizzazione

Substrato dielettrico

Rogers RO4003

 $\epsilon_{\rm r} = 3.38$ h = 0.508 mm

✓ BUON ACCORDO TRA
MISURE E SIMULAZIONI

E. Pittella, P. Bernardi, M. Cavagnaro, S. Pisa, E. Piuzzi, "Design of UWB antennas to monitor cardiac activity", *ACES Journal 2011*.

Progetto del ricevitore

Realizzazione ricevitore

Realizzazione del radar

Assemblaggio dell'intero radar: il monociclo è inviato all'antenna trasmittente (a forma di goccia) Il segnale viene ricevuto da due antenne speculari (a forma di mezzo cuore)

Test del radar: range e risoluzione

TARGET CHE SI MUOVE

E' stato preliminarmente studiata l'abilità del radar di discriminare piccoli movimenti usando una lastra di rame come target.

a) Lastra ferma: valor medio del rumore 0.58 mV;

 b) Lastra a 40 cm dal radar: la lastra è stata spostata tra due punti la cui distanza è stata variata da 1 mm a 20 mm. In tutti i casi è il radar è stato in grado di registrare le oscillazioni della lastra;

c) Lastra a 80 cm dal radar: la lastra è stata spostata tra due punti la cui distanza è stata variata da 1 mm a 20 mm. In tutti i casi il radar è stato in grado di registrare le oscillazioni della lastra.

Range stimato = 100 cm

Risoluzione = 1mm/10

Tensione in uscita: oscillazioni 1 mm

 $\begin{bmatrix} 10 \\ 5 \\ 0 \\ -5 \\ -10 \\ 0 \\ 2 \\ 4 \\ 6 \\ 8 \\ 10 \\ Time (s) \end{bmatrix}$

distanza = 80 cm

distanza = 40 cm

Confronto con lo spirometro

Andamento nel tempo del respiro nel tempo ottenuto con le misure UWB e con lo spirometro.

f = 0.2562 Hz dal segnale UWB f = 0.2509 Hz con lo spirometro

Confronto con le fasce piezoelettriche

Attività respiratoria regolare

Fase di apnea

Inversione di fase:

un ritardo dell'uscita ricevuta può dar luogo a un aumento o diminuzione del segnale di uscita del radar a seconda che lo strobe abbia un ritardo rispetto al segnale ricevuto maggiore o minore di zero, rispettivamente. 38

Salute dell'uomo

ICNIRP guideline (100 kHz – 10 GHz)

Popolazione

 $SAR_{WB} < 0.08 W/kg (corpo intero)$ $SAR_{10g} < 2 W/kg (testa e tronco)$ $SAR_{10g} < 4 W/kg (arti)$

E < 61 V/m H < 0.16 A/m PD < 10 W/m² Range di frequenza: 2 GHz to 300 GHz

Livelli espositivi in relazione alle maschere di emissione FCC

Simulazioni con il modello e l'antenna progettata Sorgente: $f_{rip} = 1 MHz$ $\sigma = 100 ps$ (Gaussiane e sue derivate fino alla quarta)

EIRPmax = $1.76 \mu W$

<u>Erms = 0.007 V/m</u> << 61 V/m (valore di riferimento ICNIRP)

SAR valutato su un uomo di peso 72.4 kg

considerando tutta la potenza assorbita dal corpo:

$$SAR_{WB} = \frac{P_{RAD}}{M} = \frac{1.76 \,\mu\text{W}}{72.4 \,\text{kg}} = 2.43 \cdot 10^{-8} \frac{\text{W}}{\text{kg}} \qquad << 0.08 \, \text{W/kg}$$
$$SAR_{10g} = \frac{\text{Pirr}}{M} = \frac{1.76 \,\mu\text{W}}{0.01 \,\text{kg}} = 1.76 \cdot 10^{-4} \frac{\text{W}}{\text{kg}} \qquad << 2 \, \text{W/kg}$$

Valutazione SA (Specific Energy Absorption)

Calcolo SA (importante per tenere in conto eventuale esposizione della testa): Partendo dal SAR_{10g} e essendo SA definita da:

$$SA = \int_{0}^{T} SAR \ dt = SAR \ T$$

Per un periodo di 1 µs (corrispondente ad una frequenza di ripetizione di 1 MHz) si ottiene:

$$SA = 1.76 \cdot 10^{-4} \cdot 10^{-6} = 1.76 \cdot 10^{-10} \quad \frac{J}{kg}$$

I valori di SA sono ben al di sotto dei limiti definiti dall'ICNIRP per la popolazione (2 mJ/kg)

Valutazione di SA in un modello 3D della testa

Valutazione di SA in un modello anatomico 3D della testa

Il più alto valore di SA in corrispondenza della lente dell'occhio è

 $7.9 \cdot 10^{-2} \text{ pJ/kg} << 2 \text{ mJ/kg}$

Sviluppo di modelli anatomici per studi di assorbimento e scattering

Sezioni trasversali

Modelli di respirazione tidale e profonda

Fine espirazione

Profonda

Studi dosimetrici

I modelli ottenuti sono stati usati per studiare l'assorbimento di potenza quando esposti a un'onda piana a diverse frequenze nella banda UWB con una densità di potenza di 10 W/m²

Sono stati valutati il SAR mediato sull'intero polmone, su 10 g e su 1 g di polmone

SAR mediato ull'intero tessuto polmonare	MODEL	3 GHz	4 GHz	5 GHz	6 GHz	7 GHz
	RESTING	2.7310E-3	7.0364E-4	2.8091E-4	1.2376E-4	5.1650e-5
	TIDAL	3.1763E-3	8.6341E-4	3.4483E-4	1.5667e-4	7.2919e-5
	DEEP	4.004E-3	1.1832E-3	4.4893E-4	1.9865e-4	9.7269e-5

Questi modelli possono essere utilizzati per il calcolo della RCS di modelli anatomici "respiranti"

M. Cavagnaro, E. Pittella, and S. Pisa, "Evaluation of the Electromagnetic Power Absorption in Humans Exposed to Plane Waves: The Effect of Breathing Activity," International Journal of Antennas and Propagation, vol. 2013, Article ID 854901, 7 pages, 2013. doi:10.1155/2013/854901

Studi dosimetrici

Figure 3. Whole body SAR for the RS, TB, and DB models for ICNIRP and IEEE-2005 reference levels.

Figure 4. SAR_{10g} for the RS, TB, and DB models for ICNIRP and IEEE-2005 reference levels.

Interazione degli impulsi UWB con i tessuti umani: radar a 1 m

Duke: 34-years-old 1.77 m tall, 72.4 kg weight

Attività respiratoria

Riflessione strati interni

Interazione degli impulsi UWB con i tessuti umani: radar a contatto

M. Cavagnaro, E. Pittella, S. Pisa, "UWB pulse propagation into human tissues", Physics in Medicine and Biology 11/2013; 58(24):8689-8707.

Misure: tensione ricevuta con il radar Novelda

CMOS impulse radar system used in the measurements is a radar integrated on a single chip, manufactured by Novelda (https://www.novelda.no/). The radar represents a sensor for human vital signs monitoring, personal security, environmental monitoring, industrial automation, and other novel sensor application.

Interazione degli impulsi UWB con i tessuti umani

Attività cardiaca

diverse lunghezze del muscolo 5 cardiaco per simularne il battito: le posizioni sono distinguibili andando a valutare il tempo di arrivo del picco del segnale ricevuto

E. Pittella, S. Pisa, and M. Cavagnaro, "Numerical and Experimental Analysis of UWB Pulse Propagation into Human Tissues", accepted to European Microwave Week 2014

Sviluppi Futuri

Hardware

- Migliorare il range del radar
- Ritardo variabile dell'impulso di strobe a controllo elettronico
- Miniaturizzazione del sistema

Software-Numerico

- Studio di nuovi modelli di uomo, anche donna e bambino per il calcolo della RCS per ottimizzare l'intero sistema
- Calcolo della RCS dell'uomo sfruttando i modelli anatomici sviluppati in modo automatico

Radar UWB per il monitoraggio remoto dell'attività respiratoria

Erika Pittella

