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8 Filtering  
 
 
The estimated spectrum of a time series shows how variance of the series is distributed as a 

function of frequency.  Depending on the purpose of analysis, some frequencies may be of greater 
interest than others, and it may be helpful to reduce the amplitude of waves at other frequencies 
by statistically filtering them out before viewing and analyzing the series.  For example, the high-
frequency (year-to-year) variations in a gauged discharge record of a watershed may be relatively 
unimportant to water supply, especially if the basin has large storage capacity. Therefore it would 
be desirable to smooth the discharge record to eliminate or reduce the short-period fluctuations 
before using the discharge record to study the importance of climatic variations to water supply.   
Smoothing is a form of filtering which produces a time series in which the importance of the 
spectral components at high frequencies is reduced.  Electrical engineers call this type of filter a 
low-pass filter, because the low-frequency variations are allowed to “pass through” the filter.  In a 
low-pass filter, the low frequency (long-period) waves are barely affected by the smoothing.   

It is also possible to filter a series such that the low-frequency variations are reduced and the 
high-frequency variations unaffected.  This type of filter is called a high-pass filter.  Detrending 
is a form of high-pass filtering:  the fitted trend line tracks the lowest frequencies, and the 
residuals from the trend line have had those low frequencies removed.  A third type of filtering, 
called band-pass filtering, reduces or filters out both high and low frequencies, and leaves some 
intermediate frequency band relatively unaffected. 

In this lesson, we cover several methods of smoothing, or low-pass filtering.  We have already 
discussed how the cubic smoothing spline might be useful for this purpose.  Four other types of 
filters are discussed here: 1) simple moving average, 2) binomial, 3) Gaussian, and 4) windowing 
(Hamming method).   Considerations in choosing a type of low-pass filter are the desired 
frequency response and the span, or width, of the filter.    

 

8.1 Mathematical operation   
As put by Panofsky and Brier (1958, p. 147), a smoothed time series value is “merely an 

estimate of what the value in the series would be if undesired high frequencies were not present.” 
A statistical filter, or digital filter, is a series of weights that when cumulatively multiplied by 
consecutive values of a time series gives the filtered series.  The series of weights is sometimes 
called the filtering function, or simply the filter.  The operation of filtering is illustrated in Table 

1.  
Assume that the numbers 12, 17,…,14 in column 

three of the table are a time series, and that the filter 
has weights 0.25, 0.50, 0.50.   The filtered values are 
the cumulative products of the weights and the 
original time series.  Filtering proceeds by sliding the 
filter alongside the time series one time value at a 
time, each time computing a cumulative product.  For 
example, in Table 1, the filter is centered on year 3, 
such that the filtered value for year 3 is computed 
from the series at times 2, 3 and 4 as  follows: 
( ) ( ) ( ) ( ) ( )0.25 (17) 0.50 10 0.25 22 14.75+ + =  

 
The filtering can be described by the equation 

Table 1.  Filtering 
 

Year 
 

Filter 
Time 
Series 

Filtered 
Values 

1  12  
2 .25 x 17 14.00 
3 .50 x 10 14.75 
4 .25 x 22 17.25 
5  15 15.75 
6  11 13.75 
7  18 18.50 
8  27 21.50 
9  14  
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where tx is the original time series, , , 1,...0,1,...,iw i n n n= − − + are the weights, with central 
weight 0w , and ts is the smoothed, or filtered, series.  The filtered value is assigned to the year 
corresponding to the central value of the sliding weights, so that features in the smoothed series 
are not shifted relative to their position in the original series.  Usually the weights are fractional 
values whose sum is one:  this property guarantees that the mean of the filtered series 
approximately equals the mean of the original series.  The filter length is the total number of 
weights.  A filter is called symmetrical if the weights to left of the central weight are the same as 
those to the right of the central weight.  For example, the filter used in Table 1 is symmetrical 
because the same weight (0.25) flanks the central weight on either side.  Symmetry of the filter 
weights is important to avoid phase shifts (see frequency response) in filtering.  For a filter with a 
central weight and n weights to either side, the filter length is  

 2 1N n= +  (2) 
 
The filtered series in Table 1 is shorter than the original time series because of the loss of 

starting and end values.  For the example, the first available filtered value is for the filtered 
centered on the second value in the original time series, and the last filtered valued is for the filter 
centered on the next-to-last original time series value.  For a filter length (odd) of N, a total of 
( 1) / 2N − values are lost off the front and back of the series because of the requirement for 
startup values.  For example, ( ) ( )1 / 2 3 1 / 2 1N − = − = value is lost from each end in applying the 
three-weight filter in Table 1. 

Sometimes the original time series is extended forward and backward artificially before 
filtering so that the filtered series can cover the full period of the original series.  Because no 
“real” data exist outside the ends of the original time series, this procedure can lead to 
disagreeable end effects in the filtered series.   Two commonly used extension methods are 1) 
substituting the long-term mean or median, and 2) reflecting the data across the end points.   

 

8.2 Frequency response    
The frequency response of a filter describes the effect of the filter on sinusoidal inputs at 

different frequencies.  The frequency response has two components – amplitude and phase.  The 
phase of the frequency response at a given frequency describes the shift in the position of a wave 
at that frequency along the time axis.  For most dendroclimatic filtering applications, it is 
desirable that the phase be zero, so that peaks and troughs representing waves in the original data 
are not shifted in the filtered data.  Filters for which the phase of the frequency response is zero at 
all frequencies are called zero-phase filters.   Symmetrical filters such as the filter used in the 
example in Table 1, and the moving average, binomial, Gaussian, and Hamming filters (to be 
discussed later) are zero-phase. 

The other component of the frequency response of a filter is the amplitude.  The amplitude of 
the frequency response at a given frequency is the ratio of the amplitude of the output sine wave 
to an input sine wave at that frequency (Figure 1).   A low-pass filter “passes” the low frequencies 
with relatively little damping.  The amplitude of frequency response of a low-pass filter is 
therefore high at the lowest frequencies.  A low-pass filter tends to remove the highest 
frequencies; the amplitude of frequency response of a low-pass filter is therefore low at the 
highest frequencies. 
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The amplitude of frequency response as 
a function of frequency is sometimes called 
the frequency response function or just the 
response function.  Symmetrical digital 
filters such as the filter in Table 1 are finite 
impulse response (FIR) filters.  An FIR 
filter has the property that if the input series 
has just a unit departure at one specific 
time, the response in the filtered series is 
restricted to a finite number of times.  For 
example, the response to a unit impulse for 
the filter in Table 1 would be distributed 
over three time points.  The frequency 
response function of an FIR filter is given 
by the Fourier transform of the filter 
weights.    For a symmetrical FIR filter, the 
frequency response function can be written 

as  
 

 0
1

( ) 2 cos(2 )
n

k
k

u f w w k f tπ
=

= + ∆∑  (3) 

where ( )u f is the frequency response, f is frequency, kw is the thk weight numbered outward from 
the central weight 0w and t∆ is the data interval, the time between successive observations in the 
time series  (Panofsky and Brier 1958, p. 149).   
 

8.3 Simple moving average    
An example of a symmetrical filter is the simple moving average filter of length N, where N is 

an odd integer. The individual weights of the moving average are equal to1/ N , so that the sum 
of the weights is ( )1 1NN = .   An example of a simple moving average filter is the 5-weight 
moving average {.2   .2   .2   .2   .2}.    Application of the N-weight moving-average filter is 
equivalent to computing a sample mean for each subset of N values.  The simple moving-average 
filter is therefore also called the running mean.   The running mean has the practical advantage of 
simplicity.   

A disadvantage of the running mean is that its frequency response, computed by (3),  has some 
undesirable properties.  The frequency response of the running mean of length N is 1.0 at the 
lowest frequency 0f = , corresponding to infinite wavelength, and decreases to 0 at 1/f N= , 
corresponding to a wavelength the same as the filter length.  Thus, for example, a ten-year 
running mean has frequency response zero to a period of 10 years, with increasing response 
toward longer periods.  The problem with the running mean is that the frequency response 
oscillates around zero for periods shorter than the filter length.  As frequency becomes greater 
than 1/ N , the response becomes negative, then passes through zero again at 2 /f N= , and so 
forth.   The oscillation in frequency response at frequencies greater than 1/ N can make 
interpretation of fluctuations in a filtered time series difficult.   It is desirable for a smoothing 
filter that the frequency response drop to zero at some frequency and remain approximately zero 
at higher frequencies.  This desirable property is achieved by having the filter weights decrease in 
size away from the central weight.  The three filters to be described next (binomial, Gaussian and 
Hamming) have this property.   
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Figure 1.  Effect on a sine wave of filtering by a 
filter with 0.50 amplitude of frequency response 
at the wavelength of the sinusoid. 
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8.4 Binomial filter     
For the binomial filter, the weights are set proportional to the binomial coefficients (Panofsky 

and Brier, 1958;  Mitchell et al. 1966).  The binomial filter can be computed simply by repeated 
convolution of the sequence of weights [0.5 0.5], corresponding to equal probabilities of success 
or failure for a binomial distribution..  If we let 0 [0.5 0.5]b = , the three-weight binomial filter is 
given by the convolution of 0b with itself 

 
01 0conv( , ) [0.25 0.50 0.25]b b b= =  (4) 

The four-weight binomial filter, say 2b ,  is formed by convoluting 1b with 0b .  The five-
weight binomial is formed by convoluting 2b with 0b , and so forth.  The weights of an 

1N + weight binomial filter can be computed conveniently as follows 
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Following Mitchell et al. (1966), the appropriate value of filter length, 1N + , can be 
computed for any desired period of 50% frequency response.   The standard deviation of the 
binomial distribution is 2B Nσ = , and the 50% response period occurs approximately at six 
standard deviations.   Thus, if the 50% response period in years is p , the relationship 

 6 3B N pσ = =  (6) 
 
  

yields  

 
2

3
pN  =  

 
 (7) 

 
To ensure that the filter length 1N + is odd, N is rounded to the nearest even integer, before 

being substituted into (5) to compute the filter weights.  Weights much smaller than (say, less 
than 5%) the maximum weight are dropped before normalizing the weights such that their sum is 
1 (Mitchell et al. 1966). 

As an example, say the desired 50% response period is 10 years.  The computed value of N  is  

 
210 11.111

3
N  = = 

 
 (8) 

which is rounded to 12.  The coefficients, computed from (5), truncated to remove excessively 
small values, and normalized to sum to 1 are 
[0.0162    0.0541    0.1216    0.1946    0.2270    0.1946    0.1216   0.0541    0.0162 ]. 
As N becomes large, the weights for the binomial filter approximate the ordinates of the 
Gaussian, or normal, distribution.  An alternative to the binomial filter is to set the weights 
proportional to the probability points of a Gaussian, or normal, distribution.   
 

8.5 Gaussian filter   
The Gaussian filter is arrived at by setting the weights equal to the ordinates of an appropriate 

Gaussian, or normal, probability density function (Mitchell et al. 1966).  The Gaussian filter is 
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particularly convenient because the standard deviation of the appropriate Gaussian distribution 
can be specified in terms of the 50% frequency response of the filter.  According to Mitchell et al. 
(1966), “the response … drops below 50 per cent at wavelengths equal to about 6 standard 
deviations of the Gaussian curve.”     

The appropriate Gaussian distribution therefore has standard deviation 

 0.5

6G
λ

σ =  (9) 

where 0.5λ is the desired wavelength at which the amplitude of frequency response is 0.5.  The 
filter weights are obtained by sampling the pdf of the standard normal distribution at 

valuest − 0, 1/ , 2 / , 3/ ,G G Gσ σ σ± ± ± … .    These weights are truncated to exclude values less 
than 5 percent of the maximum weight, and then scaled so that the weights sum to 1.0.   

For example, say the objective is a Gaussian filter with frequency response 0.5 at a 
wavelength of 10 years.  The appropriate Gaussian filter has standard deviation  

 10 / 6 1.66667Gσ = =  
The t-distribution is sampled at t-values 0, 0.6, 1.2, 2.4,± ± ± … , where the sampling is 

continued out to a large number of points – say as many points as observations in the series to be 
filtered.  For 21 sample points, the pdf values are (to 4 digits) 

 
0.0000    0.0000    0.0000    0.0001    0.0006    0.0044    0.0224    0.0790    0.1942    0.3332    
0.3989    0.3332    0.1942    0.0790    0.0224    0.0044    0.0006    0.0001    0.0000    0.0000    
0.0000 
 

Truncating to exclude all values less than 5 percent of 0.3989 yields 
0.0224    0.0790    0.1942    0.3332    0.3989    0.3332    0.1942    0.0790    0.0224. 
 

These weights sum to about 1.6565.  Dividing the weights by the sum yields the final 
weights 
0.0134    0.0474    0.1165    0.1999    0.2394    0.1999    0.1165    0.0474    0.0134, 
which sum to 1 (ignoring rounding error). 

 

8.6 Hamming-window filter  
The binomial filter approaches a “bell shape” as filter length, N, increases, and the Gaussian 

filter is by definition bell shaped.   Other ‘bell-shaped’ filters have the desired trait for low-pass 
filtering of a frequency response that drops steadily from 1.0 at low frequencies to zero at some 
frequency and remains at zero at higher frequencies.   

A different approach to filter design consists of applying a smoothing window, or smoothing 
filter, to a mathematically derived ideal digital filter.  The ideal filter is specified by a cutoff 
frequency, 0f , defined such that the amplitude of frequency response is 1 for all frequencies less 
than 0f and 0 for all frequencies greater than or equal to 0f .  Such a frequency response is 
sometimes called a brick-wall response.   Recall that the frequency response of a filter is the 
Fourier transform of the impulse response of the filter, and that the impulse response of a 
symmetrical digital filter is proportional to the filter itself.  The ideal filter is accordingly 
computed as the inverse Fourier transform of the brick-wall frequency response.  The ideal filter 
as so defined is not implementable because its impulse response is infinite and noncausal (The 
MathWorks, 1998, p. 2-19).  To create a finite-duration impulse response, the ideal filter is 
truncated by applying a “window.”   
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A useful window for this purpose is the Hamming window, or raised cosine window (Karl 
1989, The MathWorks 1999).   The Hamming window weights are computed as a function of a 
cosine  

 ( )
1

0
(0.54 0.46cos 2 / 1 ) / 0 ( 1)

N

i i
i

w i N w i Nπ
−

=

= −  −  ≤ ≤ −  ∑  (10) 

where N is the length of the window, or filter.  N  includes the central weight and the weights on 
either side of it.  For example, a 5-weight filter, with 5N = and central weight 2w ,  computed  
using Matlab function hamming() is  [0.0357 0.2411 0.4464 0.2411 0.0357].  The Hamming 
window applied to the ideal low-pass filter yields an implementable filter that in a sense is ideal 
given the specified constraint on the filter length.   

The filter design problem in the windowed method is reduced to 1) specifying a desired cutoff 
frequency, and 2) specifying a desired filter length.  As the filter length is increased, the 
algorithm comes closer to the objective of an “ideal” filter in terms of frequency response, but 
more data is lost off the ends of the series because of the large number of weights.  The filter 
weights sum to 1, but for longer filter lengths some weights are negative.  This is a necessary 
consequence of the mathematics, but can be disturbing for practical interpretation.   

The windowing method of filter design can be useful for band-pass and high-pass as well as 
low-pass windows.  The method is probably most applicable when well-defined frequency ranges 
are of interest.  For example, a tree-ring series might be filtered with a band-pass filter targeted on 
the frequencies that dominate the variance of the 11-year sunspot cycle.  In most 
dendroclimatological studies, however,   the precise cutoff frequency of variations of interest is 
difficult to specify, and the complexity of the windowing method might be overkill.  If so, a 
simpler filter (e.g., binomial, Gaussian) with a more gradual transition between the frequencies 
retained and eliminated may suffice. 
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