Termografia

Temperatura del corpo

Sintomo della salute del paziente

• ridotta pressione sanguigna in una persona con shock circolatorio implica un basso flusso di sangue alla periferia del corpo

- infezione aumento di temperatura
- anestesia diminuzione di temperatura perché deprime i centri regolazione termica
- incubatrici stabilizzano la temperatura del corpo del neonato
- artriti temperatura delle giunture è legata alla quantità di infiammazione

Termografia medica

Si basa sulla relazione tra la temperatura superficiale di un corpo e la sua potenza radiante; la temperatura delle varie zone dipende dai processi circolatori o cellulari che si hanno in un particolare punto; mappa della distribuzione della temperatura di un corpo con sensibilità di pochi decimi di grado ° C

Applicazioni:

tumore al seno disturbi artritici disturbi circolatori

Immagini

Radiazione termica

Corpo nero:

assorbe tutta la radiazione incidente ed emette la massima radiazione termica possibile

Massimo della potenza radiante λ_m =2898/T (µm)

Spettro della radiazione a temperatura ambiente: 80% della potenza totale si trova nel lontano-molto lontano IR ($4 \div 25 \ \mu m$)

Legge di Stefan-Boltzmann: la potenza radiante totale $W_t = \varepsilon \sigma T^4$ (W/m²) $\sigma = 5.67 \ 10^{-12} \ W/cm^2 K^4$

Sensori di radiazione termica

• Fotoconduttori

• Fotodiodi

• Bolometri

Parametri di un rivelatore IR

- NEP
- Detectivity
- D_{BLIP}
- NEDT

Background Limited Infrared Photodetector

Materiali per rivelatore IR

CdHgTe (fotodiodi)

• QWIP (fotoconduttori)

Microbolometer

$$\tau = K_t C_t$$

Sensors are either 160 x 120 pixels or 320 x 240.

Processo di fabbricazione direttamente su silicio

Processo di fabbricazione direttamente su silicio

Esempi di chip microbolometrici

• Prima generazione: *pacchetti metallici* (dimensioni inferiori)

• Seconda generazione: *pacchetti in ceramica* (attualmente molto usati)

- Ultima generazione: pacchetti a wafer
- ✓ Due wafer di Si usati per realizzare finestra ad infrarossi
- ✓ Microbolometri chiusi sotto vuoto nelle cavità di silicio
- ✓ Riduzione costi

- SCHEDE TECNICHE DI MICROBOLOMETRI -

Camere Termografica

$$q=q_1+q_2=q_1+(1-a)q_2$$

a coefficiente di assorbimento di A

Camere Termografica

Andamento non lineare e quindi processo di calibrazione

Camere Termografica a scansione

Camera a sensore singolo

Inside view of computerized thermal imaging system with mirrors that deflect infrared waves from a patient's breast to a camera below.

Svantaggi

Soluzione

Focal plane array

Che cos' è un FPA?

• Image sensing device consisting of an array (typically rectangular) of light-sensing pixels at the focal plane of a lens.

$$NEDT \propto \sqrt{\frac{B}{A}} \qquad \qquad B_{SC} = NB_{FPA} \qquad \qquad A_{SC} = A_{FPA} / N$$

$$NEDT_{SC} \propto \sqrt{\frac{B_{FPA}N}{A_{FPA}/N}} = N\sqrt{\frac{B_{FPA}}{A_{FPA}}}$$

Focal Plane Array Devices

Detector Material	Wavelength[µm]	FPA Size	Sensing	Operability	Cooling
InGaAs	0.9-1.6	320 x 240	Detection	> 99%	Uncooled
InSb	3.0 - 5.0	1024 x 1024	Detection	> 99%	Cooled 70K
QWIP (GaAs/AlGaAs)	8.0 - 9.0	512 x 512	Detection	> 99%	Cooled <70K
HgCdTe	1.0 – 20.0	1024x1024	Detection	85 - 95%	Cooled 60-160K
Microbolometer	7.5-13.5	320 x 240	Absorption	Typical of Si process	Uncooled

Sensibilità termica fino a 30mk, velocità fino a 100frames/s, risoluzione fino a 25micron

Processo di fabbricazione flip-chip

Detector - Camera

Detector

MHS 5000 SPECIFICATIONS Coolant: Thermoelectrically Cooled Detector: MCT Detector Automatic Functions: Auto Focus. Auto Ambient Weight: 7.4 lbs Size: 221mm (w) x 147mm (H) x 270 mm (D) **Operating Temperatures: 0-70 Degrees Celsius** Image Acquisition Temperature Range: 29 to 37 Degrees Celsius Thermal Sensitivity: <0.1 Degree Celsius Field Of View: 21.5 Horizontal And 21.5 Vertical Resolvable Elements: 255 (H) x 233 (V) Pixel Count: 57,000 Image Capture Rate: 2 Scans Per Second Emissivity Correction: 96% Image Storage: MHS/MHI/Bitmap Format Image Display: 5 x 16 True Color Palettes. 1 x 16 Grayscale, 2 x 255 Inverted Grayscale, 3 x 16 Step Isotherm Power Options: AC Adaptor/Rechargeable Battery Pack

Detector

MHS 7000 SPECIFICATIONS Detector: Microbolometer Automatic Functions: Auto Focus. Auto Ambient Weight: 3.0 lbs Size: 3.7 (w) x 4.2 (H) x 6.5 (D) Operating Temperatures: 0-70 Degrees Celsius Image Acquisition Temperature Range: 28 to 36 ° C Thermal Sensitivity: 0.08 Degree Celsius Field Of View: 29.0 Horizontal And 22.0 Vertical Resolvable Elements: 320 (H) x 240 (V) Pixel Count: 76.800 Image Capture Rate: 30 Frames/Second 60 Frames/Second (Selectable) Emissivity Correction: 98% Image Storage: MHS/MHI/Bitmap/MHV 6 x 16 True Color Palettes, Image Display: 2 x 256 True Color Palettes 1 x 256 Grayscale, 2 x 256 Inverted Grayscale 3 x 16 Step Isotherm Power Options: AC Adaptor

Immagini

While this client's mammogram was normal, her thermogram indicated highest risk, TH5, in the left breast. While initial follow-up by her breast doctor revealed nothing abnormal, her doctor diagnosed breast cancer many months later.

Immagini

This female's complaint included pain. Thermal imaging revealed a previously undiagnosed right leg arteriovenous malformation over 27mm deep. As a result, the client was spared a sympathectomy. Vascular surgery corrected the problem.

