Magnetic Resonance Imaging at Ultra High Field: Hardware, Methods and Applications

Marcello Alecci

Università dell’Aquila
Dipartimento di Scienze della Salute, 67100 L’Aquila, Italy
marcello.alecci@univaq.it

Overview of Talk

- MRI Principles
- UHF MRI Hardware
- MRI Detection/Excitation Methods
- Classification RF Coils
- Virtual lab tour RF surface coils
- Double-tuned RF coils
- Travelling wave detection
- Summary
Principles of MRI

\[\Delta E = h \nu_0 = \frac{\gamma h B_0}{2\pi} \]

\[\omega_0(r) = \gamma \cdot B_0(r) \]

\[\alpha(r) = \gamma \cdot B_1(r) \cdot t_p \]

\[k_x(t) = \int \gamma \cdot G_x(t) \, dt \]

\[k_y(t) = \int \gamma \cdot G_y(t) \, dt \]

MRI Hardware

- Human Body (spins)
- Superconductive magnet
- (Shim coils)
- Gradient coils \((x,y,z)\)
- Radio frequency coil(s)
- TX/RX electronics

\[\frac{dB_0}{dz}, \ldots \]

\[B_1 \]

1H, 13C, 23Na, 31P
Common Nuclei/Frequencies

<table>
<thead>
<tr>
<th>Nuclei</th>
<th>1H</th>
<th>^{13}C</th>
<th>^{19}F</th>
<th>^{23}Na</th>
<th>^{31}P</th>
<th>Electron (EPR/DNP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>gamma (MHz/T)</td>
<td>42.58</td>
<td>10.71</td>
<td>40.06</td>
<td>11.26</td>
<td>17.24</td>
<td>27994</td>
</tr>
<tr>
<td>B_0 Field (T)</td>
<td>(MHz)</td>
<td>(MHz)</td>
<td>(MHz)</td>
<td>(MHz)</td>
<td>(MHz)</td>
<td>(MHz)</td>
</tr>
<tr>
<td>0.001</td>
<td>0.043</td>
<td>0.011</td>
<td>0.040</td>
<td>0.011</td>
<td>0.017</td>
<td>28</td>
</tr>
<tr>
<td>1.5</td>
<td>63.87</td>
<td>16.06</td>
<td>60.08</td>
<td>16.89</td>
<td>25.85</td>
<td>41991</td>
</tr>
<tr>
<td>3.0</td>
<td>127.73</td>
<td>32.12</td>
<td>120.16</td>
<td>33.79</td>
<td>51.70</td>
<td>83982</td>
</tr>
<tr>
<td>4.0</td>
<td>170.31</td>
<td>42.82</td>
<td>160.22</td>
<td>45.05</td>
<td>68.94</td>
<td>111976</td>
</tr>
<tr>
<td>7.0</td>
<td>298.04</td>
<td>74.94</td>
<td>280.38</td>
<td>78.83</td>
<td>120.64</td>
<td>195958</td>
</tr>
<tr>
<td>9.4</td>
<td>400.22</td>
<td>100.68</td>
<td>376.52</td>
<td>105.86</td>
<td>162.01</td>
<td>263143</td>
</tr>
<tr>
<td>11.7</td>
<td>498.15</td>
<td>125.25</td>
<td>468.64</td>
<td>131.76</td>
<td>201.65</td>
<td>327530</td>
</tr>
</tbody>
</table>

BENEFITS OF HIGH FIELD MRI

- Higher signal to noise ratio
- Improved spatial resolution
- Shorter scan times
- Greater spectral dispersion
- Larger BOLD contrast
- Special applications
 ▲ (^{23}Na, ^{17}O, etc)

\[\nu_0 = \frac{\gamma}{2\pi} B_0 \quad \text{(proton)} \]

\[B_0 \ (T) \quad \nu_0 \ (MHz) \]

<table>
<thead>
<tr>
<th>1.5</th>
<th>64</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>128</td>
</tr>
<tr>
<td>7</td>
<td>298</td>
</tr>
<tr>
<td>8</td>
<td>340</td>
</tr>
<tr>
<td>9.4</td>
<td>400</td>
</tr>
</tbody>
</table>
Design Criteria for High Field RF Coils

1. Coil issues:
 - Self-resonance frequency
 - Increased radiative losses
 - Lumped vs distributed models

2. Sample issues:
 - Electric and magnetic losses
 - RF penetration effects
 - RF standing wave effects

<table>
<thead>
<tr>
<th>B_0 (T)</th>
<th>v_0 (MHz)</th>
<th>$\lambda_0/2$ (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>64</td>
<td>234</td>
</tr>
<tr>
<td>3</td>
<td>128</td>
<td>117</td>
</tr>
<tr>
<td>7</td>
<td>298</td>
<td>50</td>
</tr>
<tr>
<td>8</td>
<td>340</td>
<td>42</td>
</tr>
<tr>
<td>9.4</td>
<td>400</td>
<td>36</td>
</tr>
</tbody>
</table>

Signal-to-noise-ratio and RF coils

$$\text{SNR} \propto \frac{M_{xy} \cdot \left(\frac{B_{l,xy}}{I} \right)}{\sqrt{T_{\text{coil}} \cdot \Delta f \cdot V_{\text{coil effective}}}}$$

$$\text{SAR}_{\text{WB}} = \frac{\text{Total RF Energy Dissipated in Sample (J)}}{\text{Exposure Time (s) \cdot Sample Weight (Kg)}} = \frac{\sigma |E|^2}{2 \cdot \rho}$$

- Basic design goals:
 - minimise B_1 spatial variations over ROI
 - maximise B_1 amplitude per unit current (reciprocity)
 - minimise losses in the RF coil (cool)
 - minimise losses in the sample (volume)
 - minimise Specific Absorption Rate (SAR)
 - and many others!!!
Analytical Model Dielectric Slab

\[B_1(x) \propto \sqrt{e^{-2\alpha x}} + \Gamma_s^2 e^{2\alpha x} + 2\Gamma_s \cos(2\beta x) \]

- \(\alpha \) = attenuation constant
- \(\beta \) = propagation constant
- \(\Gamma_s \) = reflection coefficient
- \(\omega \) = Larmor frequency
- \(\varepsilon \) = permittivity of dielectric
- \(\sigma \) = conductivity
- \(d \) = slab thickness

Stratton, EM Theory, McGraw-Hill, 1941
Balanis, Advanced EM, Wiley, 1989

Analytical Model Dielectric Slab

B1 distribution is a combination of RF standing wave and RF penetration effects

- \(d=16 \text{ cm} \)
- @ 3 Tesla (128 MHz)
- \(\lambda/2=117 \text{ cm in air} \)
- \(\lambda/2=68 \text{ cm in oil} \)
- \(\lambda/2=14 \text{ cm in water} \)

Alecci et al, MRM 46:379 (2001)
3T Radial B_1: Phantoms

Good agreement FD-TD calculation and experiment

B_1 distribution is sample dependent

- ΔB_1 oil \approx 10%
- ΔB_1 water \approx 50%
- ΔB_1 saline \approx 30%

Alecci et al MRM 46:379 (2001)

1H UHF MRI in Humans

UHF (>4T) allows SNR improvement

human brain

ALECCI, Sapienza 2012
1H UHF MRS in Humans

UHF (>4T) allows spectral resolution improvement

- EMCL -CH=CH-
- IMCL -(CH2)-
- EMCL -CH3
- IMCL -(CH2)-
- Carnosine
- Carnitine
- Creatine
- Creatine
- Taurine

UHF fMRI BENEFITS

Functional MRI in visual cortex

- Visual stimulation
- 5mm slice
- Same ROI
- TE=40ms (1.5T)
- TE=25ms (4T)

Turner et al., MRM, 29, (1993)
Basic RF coils

Crossed- RF Coils NMR Detection

Traditional RF coils form standing radio-frequency waves in the sample.

The magnetic component B1, in TX mode causes nutation of the magnetization M and in RX mode governs the probe’s receive sensitivity.
MRI Signal Detection/Excitation Methods

- **Standard MRI signal detection** is based on Faraday induction via the use of one (or more) RF coil (tuned circuit) positioned in close proximity of the sample under investigation.

- **Alternative Principles:**
 - Superconducting Quantum Interference Devices (Day, PRL 1972)
 - Dielectric resonators (Balaban et al, JMR 1990)
 - Hall Probes (Boero et al, Appl Phys Lett 2001)
 - Structured Materials Flux Guides (Wiltshire et al, Science 2001)
 - Atomic Magnetometers (Savucov et al, PRL 2005)
 - Magnetoresistive Elements (Vermillat et al, PNAS 2008)

COMMON FEATURE:
they rely on close coupling between the detector and sample

- **Novel Principles:**
 - Parallel Receive (pRX) (Pruessmann et al, MRM 1999, Sodickson et al, MRM 1997)
 - Parallel Transmit (pTX) (Sotgiu et al, MRI 1988, Katscher et al, MRM 2003)
 - Traveling Wave Detection (Brunner et al, Nature 2009)

Function of RF coil

TX: high efficiency in transmission, i.e. shortest 90° RF pulse with available input peak RF power

RX: high efficiency in signal reception, i.e. highest signal-to-noise ratio

Principle of reciprocity

Maximize the measured voltage for a given precessing magnetization & minimize the noise from the coil, the sample and the environment

A resonant RLC circuit offers the maximum output at the resonance frequency and a reduced output at lower/higher frequencies (band pass).
Classification RF Coils (1)

- **Operating field**
 - Ultra Low Field (1µT-0.1T), Low Field (0.1T-1.5T), High Field (3T-4.0T), Ultra High Field (4.7T-11.7T)

- **Modality**
 - Single Tuned (1H), Double Tuned (1H & 23Na), Triple Tuned (1H&13C&31P)

- **Geometrical Design**
 - Surface, Volume, Phased-Array, RX-Parallel-Imaging elements (RX-PI), TX-Parallel-Imaging elements (TX-PI), Combined TX/RX-PI

- **Practical features**
 - Materials, TX/RX mode, TX-only, RX-only, Linear/Circular Polarization, Shielded/Unshielded, Quality Factor, Self-Resonance Limit, Eddy Currents, Radiation Losses, SAR

Classification RF Coils (2)

- **Applications**
 - Research, Pre-clinical, Clinical

- **Organ/Tissue Districts**
 - Whole Body, Brain, Neck, Cardiac, Shoulder, Wrist, Knee, Calf, Fingers, Endorectal, etc.

- **Structural/Functional Use**
 - Anatomy, Functional, Spectroscopy, Perfusion, DNP

- **Quality Control/Safety Aspects**
 - RF Artifacts, Periodic Check /Calibration, Positioning of coil(s), Calibration based on individuals (male, female, child, obese), SAR requirements, MR Thermometry
Double-Tuned UHF RF Coils

4T Double-Tuned Microstrip RF Coil Prototype

Vitacolonna et al, Proc. ISMRM 2009

- **1H channel**: one microstrip; width=10 mm; CL=11 pF
- **23Na channel**: two microstrips, width=5 mm; separation=20 mm; CL=68 pF
- **Air/Plastic gap**=35 mm
- **Copper ground**: 100 mm x 190 mm

\[f_{1H} = 168.3 \text{ MHz} \quad \lambda_{1H} = 1.8 \text{ m} \]
\[f_{23Na} = 44.5 \text{ MHz} \quad \lambda_{23Na} = 6.7 \text{ m} \]

S11(dB)
4T Double-Tuned MRI

Vitacolonna et al, Proc. ISMRM 2009

- FOV=192*230 mm^2
- Resolution=128*153
- Slice thickness=1.5 mm
- NEX=1
- TA=5 min

- FOV=192*192 mm^2
- Resolution=128*65
- Slice thickness=3 mm
- NEX=32
- TA=7 min

Acknowledgments

- Antonello Sotgiu (Un. L’Aquila)
- Angelo Galante
- Maria Alfonsetti
- Assunta Vitacolonna
- Alessandro Sciarra
- Peter Jezzard (FMRIB, Oxford)
- Stuart Clare
- James Wilson
- Steve Smith
- Peter Styles
- Markus Weiger (ETH, Zurich)
- Jon Shah (FZ Juelich)
- Sandro Romanzetti
- Joerge Felder
- Michael Smith (Penn University, USA)
- Chris Collins
- Enzo Barberi (Robarts Inst., Canada)
- James Tropp (GE, USA)
- Tommy Vaughan (Un. Minnesota, USA)
- Andrew Webb (Un. Leiden)
- Joel Mispelter (Curie Inst., France)
References