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Abstract. Much attention has been paid to making 5G developments more en-

ergy efficient, especially in view of the need for using high data rates with more 

complex modulation schemes within a limited bandwidth. The concept of the 

Doherty power amplifier for improving amplifier efficiency is explained in addi-

tion to a case study of a 70W asymmetrical Doherty power Amplifier using two 

GaN HEMTs transistors with peak power ratings of 45W and 25W. The rationale 

for this choice of power ratio is discussed. The designed circuit works in the 

3.4GHz frequency band with 200 MHz bandwidth. Rogers RO4350B substrate 

with dielectric constant εr=4.66 and thickness 0.035 mm is used. The perfor-

mance analysis of the Doherty power amplifier is simulated using AWR MWO 

software. The simulated results showed that 54-64% drain efficiency has been 

achieved at 8 dB back-off within the specified bandwidth with an average gain 

of 10.7 dB.  
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1 Introduction 

The requirement for increasing the amount of transmitted data within a limited band-

width using mobile communications systems is growing rapidly and this is expected to 

continue, especially with the developments of the LTE-Advanced system, where the 

user is being attracted by the video streaming and multimedia data in addition to the 

Internet of Things technology revolution [1-3]. Hence the 5G mobile generation will 

include several technologies that can help to achieve the promised goals of the 5G. 

Some of these are the use of massive MIMO, carrier aggregation, beam forming and 

more complex modulation schemes which produce a high peak to average power ratio 

(PAPR). The high PAPR requires the power amplifier to be backed off from the most 

efficient point into a region where the efficiency drops sharply. As a result, a large 

amount of supply power will be dissipated as a heat [1].  In particular, a  

high efficiency performance produces a low linearity of the power amplifier and vice 

versa. The power amplifier should be designed to produce high efficiency at a large 
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Output power Back-off (OBO). There are several techniques which are used for effi-

ciency enhancements, and these include Envelope Tracking (ET), Envelope Elimina-

tion and Restoration (EER), LInear amplification using nonlinear Component (LINC), 

Chireix outphasing, and the Doherty Power amplifier. However, the simplest technique 

is the Doherty amplifier, where neither additional controlling circuits nor signal pro-

cessing blocks are required [3].  

The present paper has four sections, starting with the Doherty concept, then a 

Doherty design example appropriate to 5G, followed by the simulation results and fi-

nally the work’s conclusions. 

2 Doherty Concept  

The Doherty combiner was introduced by its inventor W. H. Doherty in 1936 [4] in 

relation to high power tube amplifiers for broadcasting station. Nearly linear output 

power can be achieved using two or more power amplifiers by combining their outputs 

with λ/4 transmission lines. The Classical Doherty power amplifier consists of two sep-

arate amplifiers known as the carrier amplifier and the peaking amplifier (Fig.1). The 

carrier amplifier is designed to operate as a class AB amplifier whereas the peaking 

amplifier is designed to operate as class C amplifier. The input signal is split between 

the two amplifiers, where the carrier amplifier should be saturated at the back-off input 

power; at the same power level, the peaking amplifier starts feeding current to the out-

put till it becomes saturated at the peak region, where the two power amplifiers give 

their maximum designed output power [5-7]. 

 

Fig. 1. Doherty Power amplifier structure [2]  

The idea of the Doherty depends on the so-called active load-pull technique [1]. Where 

The operation of the Doherty power amplifier can be divided into three main regions 

[5-9]: 

The low power region, where the input signal level is not sufficient to turn the peak-

ing amplifier on so that the peaking amplifier can (ideally) be represented as an open 

circuit. On the other hand, the main amplifier is amplifying the input signal as an ordi-

nary power amplifier, however the load is seen by the main amplifier through the λ/4 
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transmission line (Impedance Inverter), which makes the main amplifier saturate be-

cause it sees a high load impedance at this phase, as shown in Fig. 2 (a). The impedance 

seen by the main amplifier depends on the following equation, 

 

                                                     𝑍1 =
𝑍𝑇

2

𝑅𝐿
                                                           (1) 

where: 

Z1: the impedance seen by the main amplifier 

ZT: the impedance of the λ/4 transmission line 

RL: the load impedance  

 

 

 

Fig. 2. Doherty operation region [2] (a) Low power region, (b) Medium and high-power region 

The second region (medium power region) where the peaking amplifier starts inject-

ing the current into the load and acts as a current source. As the current in the peaking 

amplifier increases, the load impedance seen by the impedance inverter will be in-

creased, at the same time, the impedance seen by the main amplifier will be decreased. 

As a result, the main amplifier output voltage remains roughly constant and the total 

current is increasing which increases the total output power as shown the following 

equations:    

                                                   𝑍2 = 𝑅𝐿 (1 +
𝐼°

𝐼2
)                                      (2) 

                                                      𝑍1 =
𝑍𝑇

2

𝑅𝐿(1+
𝐼2
𝐼°

)
                                          (3) 

where: 

Z2: the impedance seen by the Peaking amplifier 

 𝐼° : the current after the λ/4 transmission line 

𝐼2 : the peaking Amplifier current 

 

Finally, the high-power region, where both amplifiers work at their maximum out-

put current, where the impedance seen by each amplifier is controlled by equations (2) 

and (3). 

The current and voltage behaviour of both the main and the peaking amplifiers is 

shown in Fig. 3. It can be observed that the peaking amplifier starts injecting the current 

near the OBO point, whereas the voltage of the main amplifier remains roughly constant 

after the OBO point but its current increases. 

(a)                                                          (b) 
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Fig. 3. Main and peaking current amplitude [1] 

3 Doherty Design  

As mentioned above, the main amplifier should be designed as class AB, whereas 

the peaking amplifier should be biased as a class C power amplifier. The first issue in 

designing any power amplifier is to take into account the stability of the transistor to 

make sure it does not oscillate. Then the input and output matching networks have to 

be designed for the optimum load and source impedances that achieve the best transistor 

performance. 

Since the peaking amplifier is not behaving as a current source when it is off, but it 

is still subject to the output capacitance of the intrinsic device and the parasitic elements 

of its package, the offset line should be inserted at the output of the peaking amplifier 

to ensure that a high impedance will be seen when the peaking transistor is off below 

the back-off region, as this is one of the main conditions to satisfy the Doherty concept. 

After adding the offset line in the output of the peaking amplifier, the phase difference 

should be compensated by inserting an offset line at the output of the main amplifier.  

An important issue in designing the Doherty power is the transistor choosing, which 

is govern by the following parameters 

1- The average power 

2- The PAPR 

The summation of both parameters determines the maximum output power of the 

Doherty power Amplifier i.e. the sum of the main and peaking output power, whereas 

the PAPR represents the same amount of the back-off power that can define the ratio 

between the peaking amplifier to the main amplifier according to the following equation  

 

                                               𝐵 = −20 log (1 + 𝛿)                                               (4) 

where 

𝛿: is the ratio of the peaking power amplifier to the main power amplifier  
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For this paper, the maximum output power was 70W with an -8dB back off, so that 

the ratio 𝛿 should be at least 1.5. so that, GaN HEMTs transistors with peak power 

ratings of 45W and 25W are satisfying the design requirements 

Another issue in the Doherty power amplifier design is the line offset, where the 

output impedance of the peaking amplifier should be high, so that a line offset will be 

added to the output impedance of the peaking amplifier, its electrical length for this 

deign case is 29.2°. 

4 Simulation Results 

A 70W Doherty power amplifier analysis and performance are simulated using 

AWR MWO software. Rogers RO4350B material was used as a substrate. The full 

circuit schematic is shown in Fig.4 whereas the layout of input and output matching 

circuits for both main and peaking amplifiers are shown in Fig. 5.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Full circuit schematic  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.  Input and Output matching circuit for Doherty Power amplifier 
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The performance of the main and peaking amplifiers separately in terms of output 

power, gain, drain efficiency and Power added efficiency (PAE) are shown in Fig.6 and 

Fig.7 respectively. As illustrated in Fig.6, about 80% drain efficiency is obtained from 

the main amplifier with an average gain of 10dB. Nevertheless, the performance of the 

peaking amplifier shown in Fig. 7. represents a class C power amplifier where it can be 

noticed that the peaking amplifier starts injecting the power after the input back-off 

point. 

 

 

 

Fig. 6.  Main Amplifier performance  

 

Fig. 7. Peaking amplifier performance 
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Furthermore, it can be notice from Fig.8., the line offset is needed to produce a high 

impedance seen from the combiner toward the output of the peaking amplifier when 

the transistor is off in order to satisfy one of the Doherty conditions. It can be noticed 

that a high impedance can be gotten by adding a line offset 

 

(a) (b) 

Fig. 8. Peaking output impedance seen from the far end when the transistor is off (a) without 

line offset (b) with line offset 

In addition, it can be noticed from Fig.9 that the designed Doherty power amplifier has 

about 63% drain efficiency at 8 dB OBO for 3.4GHz; however, the efficiency level for 

other frequencies is less due to the effect of the off-set lines. At the same time, the gain 

obtained is 10.8dB. In addition, the total output power of the designed Doherty power 

amplifier is 48 dBm where both amplifiers participate with their full power. 

 

Fig. 9. Doherty power amplifier efficiency  

The achieved simulation results are compared with other works over the same fre-

quency band, as shown on Table 1 
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Table 1 

 Frequency(GHz)  Psat (dBm) Pav (dBm) OBO (dB) DE @OBO Gain dB 

[6] 3.3-3.6 43 37 6 38-56* 10 

[7] 3.4-3.6 43 35 8 63 12.5 

[8] 3.35-3.5 49.3 41 8 50.2-55.1 14.75 

[9] 3.4-3.6 44.5 36.5 8 40-42*§ 25 

This 

work 

3.3-3.5 48 40 8 54-64 10 

* Practical measurements 

§ Power added efficiency @ OBO  

 

5 Conclusions  

 The Doherty power amplifier provides the simplest way of combining two amplifi-

ers to provide a good efficiency performance around the back off region. The perfor-

mance of A 70W Asymmetrical Doherty power amplifier was simulated using AWR 

MWO; the overall Doherty power amplifier showed, as per design, an 8.3 dB OBO, 

with 40 dBm average power. The Drain efficiency at the back off point was 63%, 

whereas the average gain was 10.7dB. 
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