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Voltage waves
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ai = incident waves
bi = reflected waves

Z0i = Transmission Line Characteristic Impedance
Tipically Z0i = 50 

Vi = ai + bi Ii = (ai – bi)/Z0i

Voltage waves
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Power waves
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Matched Load

𝑎1 = 
𝑉1+𝑍0𝐼1

2
= 0

𝑉1 =−𝑍0𝐼1

𝑉1

𝐼1

Z0

When a network is closed on an matched load
(50 ) the wave reflected by the load and incident on 
the port (a1) is equal to zero

Why scattering parameters ?

• Scattering parameters can be measured at microwave 
frequencies as they require the network to be closed on 
50 Ohm and this kind of loads are "relatively" easy to realize
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Why scattering parameters ?
• At microwave frequencies, voltages and currents are hard to 

measure and the open and short circuits necessary to 
measure impedance and admittance parameters can cause 
the destruction of active devices

• The scattering parameters are defined for all two-port 
networks while the admittance and impedance parameters 
are not defined in some cases. For example, for a series 
impedance the impedance parameters are not defined 
because the currents at the two ports are not independent
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Scattering matrix
for a 1 Port Network

the square modules of the scattering
Parameters are ratios between powers
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I = Incident
R = Reflected
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Scattering matrix
for a 2 Port Network
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Reciprocal two port network

   TZZ     TSS 

(Absence of saturated ferrites or controlled generators
in the component under test)

always true if [S] is defined
starting from power waves

if [S] is defined starting
from voltage waves, this is true
if all the Z0i are equal

s21 = s12
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Symmetrical two port network

A two port network is symmetrical if its input impedance 
is equal to its output impedance 

Symmetrical networks are also physically symmetrical

S11 = S22

Lossless two port network
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Flow Graph Theory

Given a network with incident and reflected waves 
defined at the ports

a node (symbol •) is a graphical symbol associated with 
each of these waves

A branch (symbol •-->--•) is an oriented line which 

connects two nodes. This line is oriented in the 
direction of the power flow

Each branch is linked to a value which gives the 
multiplicative factor that correlates the two waves at 
the ends of the branch (nodes)
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A Path is a  continuous set of branches all equally oriented 
that touch the single nodes only once. The value of the 
path is equal to the product of the values of the single 
branches 

Loops of the 1st order are closed paths formed by 
branches all oriented in the same direction that touch the 
nodes only once. The value of the loop is equal to the 
product of the values of the single branches

Loops of the Second order are those formed by two 
loops of the 1st order with no node in common; the value 
of the 2nd order loop is equal to the product of the values 
of the two loops of the 1st order

Similarly for subsequent orders

Mason formula
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with
Pi = value of the i-th path between the two nodes 
under examination

ΣL(i) = sum of all the possible loops of the i-th
order

Σ(k)L(i) = sum of all possible loops of the i-th
order without points in common with the k-th
path
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Example

ZL

𝑏1 = 𝑆11𝑎1 +  𝑆21𝑎2

𝑏2 = 𝑆21𝑎1 +  𝑆22𝑎2

𝐿 = 
𝑎2

𝑏2
𝐼𝑁 = 

𝑏1

𝑎1

L

𝑃1 = 𝑆11 𝑃2 = 𝑆21𝐿𝑆12 𝐿1 = 𝐿𝑆22

Γ𝐼𝑁= 
𝑆11 1 −𝐿𝑆22 +𝑆21𝐿𝑆12

1−𝐿𝑆22
=  𝑆11 +  

𝑆12𝑆21𝐿

1−𝐿𝑆22

𝐼𝑁 =  𝑆11 +  
𝑆12𝑆21𝐿

1−𝐿𝑆22

Paths Loop
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Negative Resistance
Oscillator
Theory

Oscillator structure
Oscillators convert energy from continuous to alternating, and are 
generally constituted by the three following subsystems:

• A non-linear active component (ZD)

• A resonant structure that fixes the frequency of oscillation

• A transition for transferring the signal to the load (ZC)

 

ZD 

circuito 
risonante ZC 

componente 
attivo 

carico transizione active 

component

resonant 

circuit load
Transition

Figure 1
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The active element of an oscillator can be seen as a negative 
resistance component 

When two-terminal devices, such as Gunn or IMPATT diodes, are 
used the negative resistance  behavior is achieved simply by 
polarizing the diode. For three-terminal devices, such as 
transistors, an appropriate feedback network must be added to 
achieve a negative resistance behavior

When fixed frequency performances are required, the resonant 
structure is generally constituted by dielectric or ceramic
resonator. When tunable oscillators are required, YIG spheres or 
ceramic resonators tuned with varactor diodes can be used

The transition connects the source to the load, and can be used to 
improve some oscillator performance

Oscillator scheme

L
C

RD

R

RC

e(t)

CD

A

A’

In this circuit RD and CD model the active element (RD is a non 
linear resistance depending on the circuit current magnitude) 

The R, L, C network models the resonator around its 
resonance frequency and it also takes into account parasitic 
present in the circuit

RC represents the load, and the generator e(t) models the noise 
sources present in the circuit

Figure 2
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Oscillator theory

This circuit can be studied in the complex frequency 
domain s = α + j (neglecting the noise generator).
In this case, we consider the complex current I(s), 

and we place RT = R + RC + RDL (where RDL is a linear 
approximation of RD ). Applying the kirchhoff law to 
the network we obtain:

[RT + sL + 1/(sCT) ] I(s) = 0

This equation admits non-zero solutions only if the 
part between square brackets is null, and therefore:

s2LCT + sCTRT + 1 = 0

which admits two solutions:

𝑠1,2 =  
𝑅𝑇

2𝐿
±𝑗

1

𝐿𝐶𝑇
−

𝑅𝑇

2𝐿

2
= 𝛼 ± 𝑗 𝜔

where  𝜔 is called the natural oscillation pulsation 
(pulsation = angular frequency)

The circuit current evolves over time as:

   


tˆseneÎe)s(IIm)t(I
t

L2

R

st
T
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RT > 0 RT < 0 RT = 0

^
I

RD

-10

-5

0

RD= -10

RL= 5

RT= 0

RT< 0

If RT = 0, there are constant amplitude oscillations 
and the oscillation pulsation (resonance pulsation) is 
given by 

0
2 = 1 / LCT

from which it follows 

0L - 1/0CT = 0 
or 

XL + XC = XT = 0

Steady state condition
in terms of impedance
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In conclusion we have:

RT = 0

XT = 0

That is:

ZT = 0

These are the conditions for steady-state 
oscillations in terms of impedance

Steady state condition
in terms of impedances at a section

The steady-state conditions can also be applied by looking 
at the left and right of any circuit section 

Therefore, if we consider the section AA‘ of the circuit 
scheme, indicating with ZD the impedance (with a negative 
real part) of the active device and with ZL the impedance 
of the whole passive circuit (resonator and load) we have 
for the total impedance ZT :

ZT = ZD + ZL = 0

RT = RD + RL = 0

XT = XD + XL = 0

L
C

RDL

R

RC

CD

A

A’
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The steady state condition can also be written
according to the reflection coefficients D and L that
are seen looking towards the active device and towards
the load. In particular, we have:

That becomes:

D + L = 2n

1
ZZZZZZZ

ZZZZZZZ

ZZ

ZZ

ZZ

ZZ

2
00L0DLD

2
00L0DLD

0L

0L

0D

0D
LD 













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D L = 1

Steady-state condition in terms of 
reflection coefficients at a section

L
C

RD

R

RC

CDL

A

A’

C

It should be noted that if instead of the previous series 
circuit we study a parallel configuration constituted by a 
parallel resonant circuit and an active device modeled by a 
GDL in parallel with CD, the parallel resonance condition will 
be reached:

GDL

CD

Steady-state condition in 
terms of admittances at a section
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YT = YD + YL = 0 

GT = GD + GL = 0

BT = BD + BL = 0

For the oscillator design these conditions can be used, 
instead of the previous. The choice depends on the 
behavior of the resonant circuit that may be series or 
parallel

Oscillation startup condition

For the series resonant model, in order to startup the 
oscillations, it must be: 

RT < 0 
XT = 0 

In fact, in this case the exponential coefficient of the 
current expression is positive and oscillations increase 
over time

For the parallel resonant model, must be:

GT < 0
BT = 0
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With reference to the reflection coefficients, the
RT < 0 condition leads to the following results:

 D   L  > 1      (if RD + RL <  0, RD < Z0 ) 

and 
 D   L  < 1     (if RD + RL <  0, RD > Z0 ) 

Similarly, from GT < 0

(verify with examples: 
RD = -10,  RL = 5;   
RD = -100, RL = 90)

Nyquist method for the 
oscillator design

Those seen so far are conditions for steady-state 
and startup of oscillations at a predetermined 
frequency expressed in terms of admittances 
impedances or reflection coefficients 

The equations found can be used to design an 
oscillator, however, as seen before, these equations 
can be ambiguous in some cases

In addition, it is often useful to check what happens 
when the frequency changes to see if there are 
other oscillation frequencies in the circuit
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Nyquist Theory
A rigorous and always correct way to verify the 
stability of a circuit is the Nyquist criterion

The Nyquist criterion is a graphical method that allows 
to determine the stability of a closed-loop system by 
evaluating its poles in the right half-plane

 

H(f) 

G(f) 

+ 

X0 Xi 

Figure 3

i0 X
)f(H)f(G1

)f(H
X


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For the above system the input-output relation is:

where the G(f) H(f) product represents the open-
chain transfer function 

(1)
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If we call:

PCL (> 0) the number of poles with positive real part of 
the closed chain transfer function,

POP (> 0) the number of poles with positive real part of 
the open chain transfer function

NT the number of turns that the open chain transfer 
function performs in the polar diagram around the 
critical point (1, j0), (considered positive clockwise 
and negative anticlockwise)

the closed-loop system is stable if and only if:

PCL = POP + NT = 0 

If the open chain network is stable (POP = 0), it is 
sufficient that NT = 0 (reduced criterion)
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The Nyquist criterion requires the system 
modeled as a closed-loop system 

This problem can be overcome by observing that 
for a generic oscillator consisting of an active 
part (D) and a passive load (L) it is possible to 
identify a transfer function similar to that of a 
closed-loop system
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L 

aD 

bD 

bL 

aL 

Active 
Device

Passive 
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Figure 4
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The analogy between Eq (1) and (2) allows to study the 
stability of the system of Fig. 4 by means of the 
Nyquist criterion. 
In this case the open chain transfer function is given 
by the product D  L

This product can be easily evaluated with CAD systems 
available on the market through the use of an ideal 
circulator model inserted at the point of the circuit to 
be examined, according to the scheme of Fig. 5

(2)

By using the flow graph method it results

aD

bD
aL

bL

D L
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D L 

Since POP = 0 most of the time, the graph of D L 

in the polar diagram allows to apply the reduced 
Nyquist criterion

Figure 5

NT = 0 

Active 

Device  

Passive

Load

Figure 6

 

1.252 GHz 
2.24 + j0.0 

 

1 + j0 

On the Nyquist plot it is also possible to evaluate the 
Oscillation frequency of the circuit that is equal to
the frequency at which the plot crosses the positive axis (*)

(*) S. Pisa, E. Piuzzi, P. Tommasino, A. Trifiletti, A. Galli, G. Giolo, and A. Tafuto, “Desing, realization, 
and test of a 900 MHz ceramic oscillator,” Microwave Opt. Technol. Lett., vol. 49, no. 7, pp. 1713-
1717, July 2007. 



24

Negative Resistance
Oscillators
Realization

Transistor Oscillators
A peculiar characteristic of the microwave oscillators 
is that at these frequencies the parasitic elements of 
the transistors and in particular those that determine 
a feedback between the input and the output can not 
be neglected 

In the oscillator design these elements are part of 
the feedback network, so the "external" feedback 
network can be considerably simplified compared to 
the low frequency case

For this reason, in the oscillator design stage at high 
frequencies, it is easier to think about the transistor 
with feedback as a "negative resistance" component
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There are many ways to 
apply feedback and 
achieve negative 
resistance behavior 

Two of the most used 
techniques are reported 
in the figures

Common Source with 
capacitive feedback
Common gate with 
inductive feedback
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b) 
load

load

resonant circuit

Capacitive Feedbak

The design of the capacitance can be approached in a 
simple way considering the transistor as a three-port 
component, or as a serie-serie connection of two networks

circuito risonante 

componente attivo 

transizione 
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Z3 

1 

3 
Z1 ZC 
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Transistor as a three port network
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The access ports are defined between gate, 
Drain, source and the ground. 
The scattering matrix is the following:

(3)

For this device it holds: I1 + I2 + I3 = 0 

a1 - b1 + a2 - b2 + a3 - b3 = 0

Being a2 = a3 = 0  it results:

a1 – S11a1 – S21a1 – S31 a1 = 0  

from witch:

S11 + S21 + S31 = 1

And in general:

(4)



3

1

3,2,11
i

ij jS
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If we place V1 = V2 = V3 , it results:  I1 = I2 = I3 = 0 

a1 + b1 = a2 + b2 = a3 + b3

a1 - b1 = a2 - b2 = a3 - b3 = 0

from which it follows: 

a1 = a2 = a3 and b1 = b2 = b3. 

a1 = S11a1 + S12a1 + S13 a1

S11 + S12 + S13 = 1

And in general:

Combining (3), (4), (5) it is possible to achieve the 
3 port parameters starting from the two port ones

(5)



3

1

3,2,11
j

ij iS

Reactive Feedback
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The scattering matrix of the transistor with capacitive 
feedback can be obtained starting from that of the 
Transistor as a 3-port device using the flow graph shown 
in the figure

50
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For this network it results

PATHS: P1 = S11       P2 = S31 3 S13

LOOP: L1 = 3 S33

Solving the graph with the Mason’s formula it results:

(6)

The Z3 impedance is designed in order to give, |S'
11| > 1

(negative input resistance) 

Since Z3 is a purely reactive load it results:

|3| = 1

For the Z3 design it is therefore possible to draw in the 
plane of the input reflection coefficients (S'

11 ) the 
|3| = 1 locus 
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Eq (6) is a Conformal Transformation that transform 
Circumferences in the 3 plane into circumferences in the 
S’11 plane

The figure shows that there are values of X3

(Eg X3 = -100) that make |S'
11| > 1
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For the design of the capacity it is also possible to 
directly evaluate the scattering parameters of the 
transistor with the capacity in series with the source

In particular, from the scattering matrix of the transistor 
we can calculate the impedance matrix with the relation:

The impedance matrix of the capacity is:

            1

TT0T SISIZZ




  









11

11

Cωj

1
Z

3
3c

Series-Series Feedback 
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The connection between the transistor and the 
capacitance is of the series-series type, so the 
impedance matrix of the transistor with 
feedback is the sum of the impedance matrices 
of the transistor and of the inductance:

And the Total scattering matrix results:

     LSTTOT ZZZ 

           IZZIZZS 0TOT

1

0TOTTOT 


So it is possible to set a simple program that changes 
C3, evaluates STOT and choose the values of C3 that give 
rise to the highest value of | STOT11 | (which in any case 
must be greater than 1)

Since many commercial CADs perform parametric 
analysis, another possible approach for dimensioning 
the Z3 impedance is to use this option to graph the 
trend of the |S11| as a function of C3 and then choose 
the C3 value which maximizes |S11|
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Ceramic
Resonator
Oscillator

(CRO)

Ceramic Resonator
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Ceramic Resonators
Ceramic resonators (CR) are made with coaxial cable 
sections 

One end of the center conductor (diameter d) is used 
as an input and it is connected to the outside with a pin

the other end can be opened or short-circuited with 
the outer armature (w side)

Figure 7

 

pin  

Outer 
Armature 

  
  

l w 

d 

The outer armature has a square-section while the 
inner conductor has a circular section and in some 
cases is hollow

These features are used to make it easier the 
positioning and assembling of the resonator above 
planar circuits
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Typically, the dielectric inside the cable is made of a 
ceramic material whose permittivity values are 
between 10 and 90

The characteristic impedance can vary between 10 and 
30 Ω

Since the ceramic materials have low losses these 
resonators have quality factors Q between 100 and 
1000 

Temperature coefficients lower than 10 ppm/°C are 
achieved

To understand the operation of ceramic resonators, we 
can observe that for a line of length "l" closed with a 
short circuit we have: 

ZIN = jZCtanl (7)

and then, if l =  / 4 (l = /2) the line shows a parallel 
resonant circuit type behavior at the input port
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Similarly, for a "l" length open line we have:

YIN = jYCtan l (8)

and therefore, if l =  / 2  (l = ) the line still have a 
parallel resonant behavior

Although the name is ceramic resonators, these 
structures generally operate at frequencies below 
the resonance frequency (self resonant frequency -
SRF) where they show an inductor-like behavior with 
high quality factors 

The typical application of these resonators is in 
oscillators in which the resonator behaves like an 
inductance and resonates with the capacitive inputs 
of the transistors 
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For example, with reference to a short cable of length λ / 4, at 
frequencies much lower than the SRF, the cable behaves like an 
ideal inductance (the value of inductance does not depends on 
the frequency)

As the frequency increase, we approach the SRF and the 
shorted cable can be better modeled as a parallel RLC circuit

Figure 9

The length of the resonator can be chosen using 
equations (7) and (8) 

However, the manufacturers of the resonators provide 
CADs through which, having set the desired inductance 
value and the resonance frequency SRF (typically 
between 10 and 20% greater than the working 
frequency), the parameters to be included in the 
simulation CAD are indicated together with the code of 
the component to be ordered 
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Finally, we can note that for the correct use of ceramic 
resonators it is important to consider also the additional 
inductance contribution due to the pin (see Fig. 7)

Experimentally it has been observed that a conductive 
wire adds a contribution of about 1 nH for each 
millimeter of length so that additional inductance 
contributions varying between 0.5 and 2 nH must be 
considered

CRO Design
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Figure 8

The oscillator design is performed eliminating the 
transition in Fig.8 and considering the transistor 
closed on a load equal to 50 

The first step of the oscillator design consists in 
diemensioning the purely reactive element C3 in 
order to obtain the maximum |D| and in any case 
greater than 1 (RD < 0) 

This can be done by following the procedure 
described in the previous paragraph
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The second step consists in dimensioning the input 
resonant circuit in order to obtain the desired oscillation 
frequency (SRF 10% or 20 % greater than oscillation 
frequency

Third step: Since the equivalent circuit of a dielectric 
resonator is a parallel RLC, the parallel resonance startup 
condition must be applied: 

GL + GD < 0      (A)

BL + BD = 0       (B)

Given the low losses associated with the dielectric 
resonator, the (A) condition is almost always verified

In order to satisfy (B) a dielectric resonator must be 
selected, for which, at the required resonance frequency 
it results:

BL = -BD

Since the input behavior of a transistor with capacitive 
feedback is typically capacitive the above condition is 
verified by operating the ceramic resonator in the 
inductive region to the left of the first parallel resonance 
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If BL + BD = 0 is not satisfied at the project frequency, a 
capacitor (or varactor) can be added in parallel to the 
resonant circuit

The varactor can be also used to realize a voltage 
controlled oscillator (VCO) 
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In order to verify the correctness of the design it is 
useful to evaluate, through the Nyquist plot, the intercept 
with the abscissa positive axis and then check if 
oscillations can be established in the circuit and their 
frequency 

Moreover, with the Nyquist plot it is also possible to see if 
the circuit has spurious oscillations at different 
frequencies from the desired one

If the analysis with the Nyquist plot gives positive results, 
the realized device is able to oscillate on a load equal to 
50 

With these resonators, oscillators ranging from 200 MHz 
up to 5 or 6 GHz can be realized. It is not possible to 
operate at higher frequencies because the mechanical 
dimensions of the resonator become too small
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Using CAD in which analysis techniques are implemented 
for non-linear structures it is then possible to evaluate 
the oscillator performance in terms of effective 
resonance frequency, output power, harmonics and phase 
noise

Using these CAD it is also possible to dimension the output 
transition network in order to optimize the oscillator 
performance in terms of phase noise, output power, 
harmonics, etc.

Dielectric
Resonator
Oscillator

(DRO)
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Dielectric
Resonator

Dielectric Resonators characteristics
Dielectric resonators (DR) are made with ceramic materials 
with dielectric constants varying between 30 and 100

The dimensions of these resonators, for a given operating 
frequency, compared to those of resonators made with empty 
metal cavities, are smaller than a factor equal to the square 
root of r

Fig. 9 shows the geometry and the force lines of the electric 
and magnetic field for the TE01 mode of a cylindrical 
resonator

Remember that the index 0 indicates the order of the Bessel function, 
the index 1 indicates the order of the root, the real index  indicates that 
the spatial variation of the field along the resonator axis is a non-integer 
multiple of a half wavelength. More details can be found in: D. Kajfez, P. 
Guillon: Dielectric resonator, A. House, 1986



42

As can be seen the force lines of the electric field are 
concentric circumferences around the cylinder axis while 
those of the magnetic field are ellipsoids that lie in the 
meridian plane

The losses, and therefore the merit factor of the TE01

mode, are essentially connected to the losses in the 
dielectric and we obtain values of Q ranging from 1000 to 
10000 at frequencies between 1 and 30 GHz

The temperature coefficient of the resonant frequency 
(f/T) includes the combined effect of the temperature 
coefficient of the permittivity and of the thermal 
expansion of the dielectric. Typical values for this 
coefficient vary between -9 and +9 ppm / ° C (ppm = parts 
per million) 
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Dielectric Resonators model
The assembly of the DR is generally carried out as in 
Fig. 9. The resonator is placed over the substrate of 
the microstrip: in this way the magnetic field of the 
microstrip is able to excite the TE01 mode

The lateral distance between the resonator and the 
line determines the degree of coupling between the 
two

The equivalent circuit of a resonator coupled to the 
microstrip line (Fig. 10.a) is shown in Fig. 10.b. In the 
figure, Ls, Cs and Rs model the resonator around the 
resonance frequency, while L1 and Lm model the 
magnetic coupling.
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The circuit equations are:
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From the loop in the second branch of the transformer it results:

VS + ISRS +IS/jCS = 0

Combining this equation with (A) it results

ISRS +IS/jCS +j LSIS +j LmI1 = 0

𝐼𝑠

𝐼1
= 

−𝑗𝜔𝐿𝑚

𝑅𝑆+𝑗𝜔𝐿𝑠+
1

𝑗𝜔𝐶𝑠

𝑍1= 𝑗𝜔𝐿1 +
𝜔2𝐿𝑚

2

𝑅𝑆+𝑗𝜔𝐿𝑠+
1

𝑗𝜔𝐶𝑠

Around the resonance frequency it results:

𝑗(𝜔0 + ∆𝜔)𝐿𝑠+ 
1

𝑗(𝜔0+∆𝜔 )𝐶𝑠
=

𝑗𝜔0𝐿𝑠 + 𝑗∆𝜔𝐿𝑠 +
−𝑗(𝜔0−∆𝜔 )

(𝜔0+∆𝜔 )(𝜔0−∆𝜔 )𝐶𝑠
=

𝑗𝜔0𝐿𝑠 + 𝑗∆𝜔𝐿𝑠 −
𝑗

𝜔0𝐶𝑠
+ 

𝑗∆𝜔

𝜔0
2𝐶𝑠

= 𝑗2∆𝜔𝐿𝑠

𝜔= 𝜔0 + ∆𝜔 𝜔0
2𝐶𝑠𝐿𝑠 = 1where:

For the Z1 denominator it results:
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𝑍1= 
𝜔0
2𝐿𝑚

2

𝑅𝑆+𝑗2∆𝜔𝐿𝑠
= 

𝜔0
2𝐿𝑚

2

𝑅𝑆

1+
𝑗2∆𝜔𝐿𝑠 𝜔0

𝑅𝑆 𝜔0

= 

𝜔0
2𝐿𝑚

2

𝑅𝑆

1+
𝑗2𝑄𝑈𝑆∆𝜔

𝜔0

= 
𝑅𝑃

1+
𝑗2𝑄𝑈𝑆∆𝜔

𝜔0

𝑄𝑈𝑆=  
𝜔0𝐿𝑠

𝑅𝑆
= 𝑄𝑈𝑃=𝜔0𝐶𝑃𝑅𝑃 𝑅𝑃=

𝜔0
2𝐿𝑚

2

𝑅𝑆

𝐶𝑠𝐿𝑠 = 𝐶𝑃𝐿𝑃

For this structure the series (QUS) and parallel (QUP) 
unloaded Q are equal and therefore:

Moreover the two circuits
have the same resonance
frequency and so:

𝑄𝐸𝑃=  
2𝑍0

𝜔0𝐿𝑃
𝑄𝐿𝑃=

2𝑍0 //𝑅𝑃

𝜔0𝐿𝑃

𝛽 =
𝑄𝑈𝑃

𝑄𝐸𝑃
= 

𝑅𝑃

2𝑍0
The coupling coefficient is:

The external and loaded Q are:

And it results:

upepLp Q

1

Q

1

Q

1


QLP QEP QUP
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In conclusion the following circuit can be drawn

 

Cp 

Rp 

Lp 1 2 

Z0 Z0 

Γ𝐿= 
𝑍𝐿−𝑍0

𝑍𝐿+𝑍0
= 
(𝑍1+𝑍0)−𝑍0

(𝑍1+𝑍0)+𝑍0
= 

𝑍1

𝑍1+2𝑍0
= 

𝑅𝑃

1+
𝑗𝑄𝑈∆𝜔

𝜔0
𝑅𝑃

1+
𝑗2𝑄𝑈∆𝜔

𝜔0

+2𝑍0
=  

𝑅𝑃

𝑅𝑃+ 2𝑍0+2𝑍0
𝑗2𝑄𝑈∆𝜔

𝜔0

= 
𝛽

1+𝛽 +
𝑗2𝑄𝑈∆𝜔

𝜔0

Γ𝐿

where:

Thus the presence of the mutual inductance in 
the model has transformed a series resonant
circuit into a parallel resonant circuit

Moreover, the reflection coefficient (1) 
depends on the coupling coefficient  which in 
turn depends on the distance between the 
resonator and the microstrip
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DRO Design
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Oscillators using dielectric resonators are commonly 
referred to as dielectric resonators (Dielectric 
Resonator Oscillator - DRO). A possible configuration 
for these oscillators is shown in the figure below

Figure 11

D
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1st step: to apply the feedback to the transistor to 
achieve an input negative resistance

2nd step: to chose a resonator with the desired 
resonance frequency

3rd step: to determine the value of the reflection 
coefficient L in Fig. 11 to verify the condition for the 
startup of the oscillations. We use the startup condition 
in terms of reflection coefficients. Being the dielectric 
resonator modelled as a parallel RLC circuit and being, in 
practical cases, always verified the condition Y0 < | GD | 

must be:

| L | | D| > 1 

 L +  S'
11 = 0

For dimensioning | L | and  L two specific procedures 
can be used. 

As for the | L | this depends on the type of DR used and 
on the distance between the DR and the microstrip line. 
This link has been previously evaluated and we obtain:

Γ𝐿 = 
𝛽

1+𝛽 +
𝑗2𝑄𝑈∆𝜔

𝜔0

> 
1

Γ𝐷



49

There are various software on the market, often 
supplied by the same companies that produce 
dielectric resonators, through which it is possible to 
evaluate | L | starting from the dimensions of the 
resonator, from its dielectric characteristics and 
from the distance between the resonator and the 
microstrip.

In particular, once chosen the resonator for the 
desired resonance frequency we can vary the 
distance between the resonator and the microstrip
to find a value of | L | that meets the previous 
equation

In order to satisfy the resonance condition for the 
phase, we must note that at the resonance the DR is 
purely resistive, and its phase is zero.

To satisfy the phase condition a line L can be 
inserted between the resonator and the active circuit 
(see Fig. 11)

with this choice the condition on the phase becomes:

-2L +  D = 0

The length of the line must be chosen to satisfy this 
equation at the resonance frequency of the DRO
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In order to verify the correctness of the dimensioning 
it is useful to carry out the analysis with the Nyquist 
plot previously described 

By evaluating the intercept with the abscissa positive 
axis of the Nyquist plot, it is possible to detect if 
oscillation occur in the circuit and to establish their 
frequency 

Moreover, it is also possible to see if the circuit has 
spurious oscillations at different frequencies from the 
planned one

If the Nyquist analysis gives positive results, the 
component thus realized is able to oscillate on a load 
equal to 50 

Using CAD in which analysis techniques are 
implemented for non-linear structures it is then 
possible to evaluate the oscillator performance in 
terms of effective resonance frequency, output 
power, harmonics and phase noise


