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Voltage controlled oscillator (VCO)
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Phase-locked loop (PLL) /1

• PLL is a system that allows synchronization of local 
oscillator in the receiver to received data: the phase-locked 
oscillator can be used or received signal regeneration

• The system performs evaluation of the phase of received 
signal, and then synchronization of VCO phase by means 
of a DC feedback loop

6

Phase-locked loop (PLL) /2

• The overall system comprises a Phase Detector, a low-pass filter with 
pulse response w(t), and a VCO
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Phase-locked loop (PLL) /3

• Under the hypothesis that the received signal vi(t) shows 

instantaneous phase i(t), and that at initial time instant it 

shows a phase difference vi(0) with respect to the signal at 

VCO output:

vv(t) = Av(t) · sin(v t + vi(0))

vi(t) = Ai(t) · sin(i t)

• Kp is the phase detector gain, and Kv the VCO gain

8

Phase-locked loop (PLL) /4

• The system can be represented by means of the equivalent 
scheme below:
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Phase-locked loop (PLL) /5

ep(t) = Kp · [i(t) - v(t)] Ep(s) = Kp · [i(s) -
v(s)]

ev(t) = ep(t)  w(t) Ev(s) = Ep(s) ∙ W(s)

v(t) = 0 + Kv · ev(t) 

10

Phase-locked loop (PLL) /6

• In order to understand the PLL dynamic behavior, we suppose 

that at the initial time instant the system is in lock (i = 0, ev = 

0).

• Moreover, we suppose a little deviation i(t) (i.e. a small-signal 

model can be used) with respect to the value i0 at lock:

iTOT(t) = i0 + i(t)

vTOT(t) = v0 + v(t) = i0 + v(t)
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Phase-locked loop (PLL) /7

• From linear analysis, PLL transfer functions as a function 
of the loop gain T(s) are derived:

– T(s) = Kp · Kv · W(s) / s

– v(s) / i(s) = T(s) / [1 + T(s)] = H(s)

– (s) / i(s) = [i(s) - v(s)] / i(s) = 1 / [1 + T(s)]

• If Kp · Kv  the VCO phase is locked to the received 
signal phase

12

Phase-locked loop (PLL) /8

• PLL operation can be comprised by evaluating the response to a 

step input signal, starting from the lock condition. Both a phase 

step and a frequency step are considered:

• In case of phase step i we get:

lim (t) = lim s·(s) = lim s · i/s · 1 / [1 + T(s)] = 0

t  s 0                             s 0

• In case of frequency step i we get:

lim (t) = lim s·(s) = lim s · i/s
2 · 1 / [1 + T(s)] = i / [Kp·Kv·W(0)] 

t  s 0                             s 0
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Phase-locked loop (PLL) /9

• The PLL behaves as a unitary feedback system with loop 

gain T(s).

• Loop stability can be checked by tracing the root locus of 

loop gain T(s), as a function of the filter transfer function 

W(s)

T(s)
i(s)] v(s)]

-
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Phase-locked loop (PLL) /10

• If W(s) = 1 (no filter), T(s) shows a single pole in the origin, and 

therefore no instability issues are found

• If W(s) = 1 / (1 + s R C) (R-C filter) T(s) shows a pole in the 

origin and a second pole s = -1 / (R C): an oscillation behavior is 

found in the time response, and the damping factor  decreases 

as the loop gain Kp· Kv increases:  
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Phase-locked loop (PLL) /11

• In order to induce oscillation damping, a zero is added in the 

filter transfer function, so that the following root locus is found:
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Phase-locked loop (PLL) /12

• Loop gain expression is: 
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Phase-locked loop (PLL) /13

• A more efficient filter topology can be considered exploiting an 

operational amplifier (active filter)

18

Phase-locked loop (PLL) /14

• In this case we have T(s) = Kp· Kv / s ·(1 + s R2 C) / (s R1 C).

• In particular, W(s) shows a pole in the origin, and the system 
allows phase lock even in presence of a frequency step
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Phase-locked loop (PLL) /15

• The following expression for H(s) is found:

• We’ll see below the effect of PLL in presence of white 

phase noise
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Phase-locked loop (PLL) /16

• The Lock Range is a parameter which accounts for PLL 

capability to recover instantaneously (i.e. within a single period) 

the lock condition, in presence of phase noise

• The lock Time TL shows inverse proportionality versus the 

natural radian frequency of poles n. The lock range L instead 

shows direct proportionality versus n. Therefore, a more fast 

synchronization is obtained with a grater n value (a greater loop 

bandwidth)

• However, a greater loop bandwidth produces more phase noise at 

the output
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Phase-locked loop (PLL) /17

• The Lock Range can be evaluated by supposing a stepwise input i: 

it corresponds to an input phase error i =it, and at PD output (if 

an analog multiplier is used) we find: 

ep(t) = Kp · cos(i t)

• At filter output (W(j) = |W(j)| ∙ exp(W(j)) is filter response), the 

signal ev(t) is:

ev(t) = Kp |W(ji)| · cos(i t + W(i))

• And maximum radian frequency variation at VCO output is:

MAX = Kp Kv |W(j i)|

22

Phase-locked loop (PLL) /18

• The condition to obtain PLL lock within a period, as a function 

of VCO tuning range and loop gain, is the following:

L = Kp Kv |W(j L)|

• If an active filter is consider, we have:

L = Kp Kv R2 / R1 = 2  n
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Noise sources in electronic devices /1
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• The presence of such noise sources in a 2-port network can 

be represented by means of a noisy equivalent model

24

Noise sources in electronic devices /2

• The power spectral density of current noise in a CE 

amplifier shows the behavior depicted below, in which 

three main regions can be seen:

– 1. 1/f  behavior due to Flicker noise (up to some KHz)

– 2. Flat behavior due to white noise (Shot & Johnson)

– 3. f2 behavior due to transistor dominant pole
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Phase noise in oscillators - 1

• Due to the presence o device noise sources, noise is added 

to both amplitude and phase of the oscillators:

• Amplitude modulation can be cancelled by means of a 

limiter, while phase noise cannot be eliminated
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Phase noise in oscillators - 2

• Noise can be considered as a phasor that produces 

modification of the output signal phasor: both the 

amplitude (but it can be neglected) and the phase are 

affected. For noise power (i.e. noise variance) we get:

• As it can be seen, power noise is inversely proportional to 

signal-to-noise ratio
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Phase noise in oscillators - 3

• The signal spectrum shows 2 side-bands with different power, 

together with the central frequency (i.e. the oscillation frequency f0)

• If we evaluate the spectral component at fm frequency of a signal 

composed of 2 side-bands B1 (at -fm) e B2 (at fm), and f0

• It can be considered as the superposition of an amplitude modulation 

and a low-index phase modulation
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Phase noise in oscillators - 4

• A symmetrical spectrum is produced by amplitude modulation

• If we suppose a cosine waveform with unitary amplitude and 

phase modulation with maximum phase deviation  << 90°:
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Phase noise in oscillators - 5

• By using trigonometric transformations, we get:

• In the following slide, we can see the overall signal 

together with the 2 modulated signals
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Phase noise in oscillators - 6

Overall

Amplitude modulation

Phase modulation
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Phase noise in oscillators - 7 

• The Figure of Merit used to account for phase noise 

performance is Single Sideband to Carrier Ratio SSCR(), 

the ratio between noise in a single sideband  = 21Hz

placed at  distance from 0, and the overall power: 

• Now, a link will be found between physical noise sources 

in electronic devices and phase noise, under additive noise 

hypothesis
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Phase noise in oscillators - 8

• Block A amplification is considered as real

• Noise is ‘filtered’ by a resonant network characterized with 

its frequency stability coefficient SF:

• Noise N() of electronic devices produces transfer 

function phase variation 
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Phase noise in oscillators - 9

• Phase noise spectrum can be evaluated from frequency 

dependence on noise spectrum 

• Around 0 Flicker noise is the main contribution and the 

spectrum is:

• Only white noise is found for frequencies greater than the 

noise corner frequency (fnc):
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Phase noise in oscillators - 10

• Noise is no more filtered by the resonant network: the SF

expression used to evaluate phase noise is not valid, and the 

phase noise spectrum is white as the noise

• Finally, above the cut-off frequency of the amplifier block, noise 

is filtered out by the amplifier transfer function (-20 dB/dec slope 

if single-pole response)
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PLL Phase noise - 1

• Let’s suppose to start from lock condition and to inject white 

noise with B bandwidth

• From PLL transfer functions we get:

• and finally the overall phase noise power spectrum is:
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PLL Phase noise - 2

• Output phase noise depends on PLL transfer function (and so 

from chosen filter):

– No filter:

– RC filter:

– Active filter:
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PLL Phase noise - 3

• In particular, if an active filter is considered, for the output 

phase noise power we get:

• Therefore, reduction of phase noise is obtained according to 

the factor n/B ( = 0.5 is considered):
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PLL Phase noise - 4

• PLL works as LPF for input phase noise, and as a HPF for VCO 

phase noise: in both cases, n is the cut-off radian frequency

Kp W(s) Kv + 1/s
OUT

ErrVCO

: N1/s

ErrQUARTZ
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4-quadrant Multiplier

• A 4-quadrant multiplier architecture is obtained by driving the Gilbert 

cell by means of a differential current iX

• Also temperature compensation is obtained
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4-quadrant Multiplier

• A multiplier is obtained under small-

signal hypothesis:
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4-quadrant Multiplier

• In case of small-signal inputs at the same radian frequency :

• The tone at radian frequency 2  is cancelled by means of a LPF, and 

the output current is proportional the product of the 2 inputs:
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4-quadrant Multiplier as Phase Detector
• An analog multiplier and a LPF can be used as a phase detector, for instance in a 

PLL:

• If the two inputs are at the same frequency but different phase:

• At the output we get:

• The PD gain Kp depends on amplitude of input signals

• In a PLL, when lock condition is found, /2 phase difference is got, as cos() = 0
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