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Lumped and 
Microstrip Filters
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Filters are widely used in microwave systems in order 
to allow the transmission of signals at desired 
frequencies and to strongly attenuate signals at 
undesired frequencies 

Therefore, filters, are divided into high pass, low pass, 
band pass, band stop

An ideal filter should have zero attenuation in the 
pass band and infinite attenuation in the stopped band 
Unfortunately, a filter with these characteristics 
does not exist, so some compromises must be made

INTRODUCTION
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Consider the following circuit consisting of a two-port network 
powered by a matched generator (ZG = 50) and closed on a 
matched load (ZL = 50 )

We define the circuit attenuation and return loss as:

where PI is the incident power, PR is the reflected power, PE is the 
power entering the network, PO is the outgoing power. ArdB is the 
reflection attenuation while ADdB is the dissipation attenuation

Attenuation and Reflection Loss 
of a two-port network

 

b1 

ZL = 50 

 

S11 S12 

S21 S22 

ZG = 50 

VG 

b2 

a2 a1 

𝐴𝑑𝐵 = 10𝑙𝑜𝑔10
𝑃𝐼

𝑃0
= 10𝑙𝑜𝑔10

𝑃𝐼

𝑃𝐸
+ 10𝑙𝑜𝑔10

𝑃𝐸

𝑃0
= 𝐴𝑅𝑑𝐵 + 𝐴𝐷𝑑𝑏

𝐿𝑅𝑑𝐵 = 10𝑙𝑜𝑔10
𝑃𝐼
𝑃𝑅

  2

1

0

*
III

Z2

1
Re

2

1
P aIV 

  2

11

2

1

00

2

1*
RRR S

Z2

1

Z2

1
Re

2

1
P a

b
IV 

   2

11

2

1

0

2

1

2

1

0

E S1
Z2

1

Z2

1
P  aba

  2

21

2

1

0

2

2

0

*
OOO S

Z2

1

Z2

1
Re

2

1
P abIV 

With the position V = a + b, I = (a - b) / Z0 and having
set ZG = ZL = Z0 = 50 we have:

-
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It follows that the attenuations and the loss of 
reflection can be expressed as a function of the 
two-port network scattering parameters such as:
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Design of a filter by using 
the low-pass prototype 

method (LPP)

The low-pass prototype method, also known as the 
insertion loss method, allows good control of the 
amplitude and phase characteristics of a filter

If for example it is important to have a low 
attenuation in the band, a binomial response can be 
used

if a steep slope (high attenuation out of band) is 
important, then a Chebyshev response can be used

In all cases, this method allows, within certain limits, 
to improve the characteristics of the filter by 
increasing the number of filter elements
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Filters are networks (theoretically) without losses; 
therefore they act as reflection attenuators. Placed
S11 = ej we have:

where:

PLR is the Power Loss ratio.
If we consider a real signal v(t) and we denote its 
Fourier transform by V(f) , it results V(f) = V *(-f) (even 
real part and odd imaginary part, or even module and odd 
phase), the same holds for i(t) and therefore 
I (f) = I*(- f). From these properties it results 
Z (f) = V(f) /I (f) = Z *(- f) and (f) =  *(- f), so, in 
conclusion, we have that  is an even function of  and 
even more 2
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Binomial or Maximally Flat or 
Butterworth Filters

For these filters we choose:

N (’2) = 1; M (’2) = K2 ’2N

where K2 is a constant called filter tolerance and N is 
called filter order.

So we have:

PLR = 1 + K2’2N

AdB = 10log10[1 + K2’2N] 

The figure shows the qualitative trend of the PLR for 
N = 1 and N = 2
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For ’ = 0 the PLR(’) function has the first (2N –1) derivatives equal to 
zero

for ’ = 1 (cut-off) it results:

PLR = 1 + K2

ACdB = 10 log10 (1 + K2)

K2 = 10Ac / 10 – 1

This last equation shows that the filter tolerance (K2) is linked to the cut-
off attenuation. For example for K2 = 1 we have ACdB = 3dB.

for ’ >> 1 it results:
PLR = K2 ’2N

AdB = 10log10 K2 + 10log10 (’2N) = 10log10 K2 + 20Nlog10 ’

The attenuation increases by 20 N dB per decade. Therefore, N 
determines the slope of the filter and it is chosen to have a certain
attenuation out of band

Constant Ripple or Chebyshev filters

For these filters we choose:

N (’2) = 1; M (’2) = K2 TN
2(’)

where TN (’) are the Chebyshev polynomials of degree N:

TN(’) = cos[Ncos-1(’)] for ’ < 1

TN(’) = cosh[Ncosh-1(’)] for ’  1

Chebyshev polynomials have the following properties: TN(0) = 0 for odd N, 
TN(0) = 1 for even N, TN oscillates between 1 for ’ < 1 while it grows
monotonically for ’ > 1. 
For ’ >> 1 holds the approximation: TN

2(’) = (1/4) (2’)2N

For these filters we have:

PLR = 1 + K2 TN
2(’)

AdB = 10log10 [1 + K2 TN
2(’)]
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The qualitative trend of the PLR for N = 1 and N = 2 is
shown in the following figure

For ’ = 1 (cut-off) it results:

PLR = 1 + K2

ACdB = 10 log10 (1 + K2)

for ’ >> 1 it results:

PLR = (1/4) K2 (2’)2N

AdB  10log10 K2 + 10log10 (’2N) + 10log10 [(1/4) 22N] =

10log10 K2 + 20Nlog10’ + 10log10 [(1/4) 22N]

The attenuation increases by 20 N dB per decade, but is
(1/4) (22N) times greater than that of the binomial filter
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Transformation formulas
The functions that have been considered for the 
response of the PBPR filter are normalized in terms
of frequency

Starting from the LPP we may get a low pass filter
with cut-off pulsation given by c with the following
transformation:

𝜔′ = 

𝐶

For example, with reference to a binomial filter, 
denormalizing with respect to frequency, we obtain:

PLR = 1 + 𝐾2 
𝐶

2𝑁
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The qualitative response trend for a fixed N is shown in 
the following figure. The Figure shows that for  = c we
have PLR = 1 + K2 and, for  = 0 we have PLR = 1.
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Starting from the LPP we may get a high pass filter 
with cut-off pulsation given by c with the following 
transformation:

𝜔′ = -
𝐶



For example with reference to a binomial filter we get:

𝑃𝐿𝑅 = 1 + 𝐾2 −
𝐶



2𝑁

A qualitative response of the filter, as a function of 
frequency and for a fixed N is shown in the following 
figure. In this case, for  =  we have PLR = 1; for
 = c we have PLR = 1 + K2 and finally for  = 0 we have 

PLR = 
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Starting from the LPP we may get a band pass 
filter with lower cut pulsation given by 1 and higher 
cut pulsation given by 2 with the following 
transformation:

𝜔′ = 
𝜔0

(𝜔2 −𝜔1)

𝜔

𝜔0
−

𝜔0

𝜔

with 𝜔0 =  𝜔1𝜔2

For example with reference to a binomial filter we get:

𝑃𝐿𝑅= 1 + 𝐾2 𝜔0

(𝜔2 −𝜔1)

𝜔

𝜔0
−

𝜔0

𝜔

2𝑁

The qualitative frequency trend of the filter for a 
given N is shown in the following figure
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for  = 0 we have PLR = 1

for  = 2 we have

𝑃𝐿𝑅= 1 + 𝐾2 𝜔0

(𝜔2 −𝜔1)

𝜔2

𝜔0
−

𝜔0

𝜔2

2𝑁
= 1 + 𝐾2

for  = 1 we have PLR = 1 + K2

for  = 0 we have PLR = 

Circuit realization of the filter
The frequency response of the LPP filter can be obtained
with electric circuits made by lumped elements inductors
and capacitors

Below are two possible circuits consisting of a cascade of 
inductors and capacitors in a number equal to the order 
of the filter

In particular it can be noticed that, since the circuit
must have a low-pass type behavior, there are always
series inductors and parallel capacitors

The network in the following figure, whose components
are dimensionless normalized quantities, begins with a 
series inductor
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L1 = g1
L3 = g3

Ln-1 = gN-1G0 = go

Cn = gN

gN+1
C4 = g4C2 = g2

By progressively numbering the elements with an index k 
from left to right, the network has inductors for odd k 
and capacitors for even k, and ends in two different ways 
(capacitors or inductors) depending on the total number N 
of elements of the filter

It can also be noted that impedances and admittances
alternate in the network; therefore if gN is a capacitor in 
parallel (admittance) gN + 1 is a resistance; if gN is an 
inductor in series (impedance) gN + 1 is a conductance

Another possible circuit with a LPP filter response is that in 
the figure below. In this case the first element of the 
network is a capacitor

Also in this case all the components of the network are 
dimensionless normalized quantities

The network has capacitors for odd k and inductors for 
even k, and ends in two different ways (capacitor or 
inductor) depending on the value of N
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Dimensioning of the 
prototype filter

The design specifications of a filter require, once the 
type of response is chosen, the assignment of a certain 
attenuation out of band

For example, for ’ = 2, the attenuation must be 
AdB = 20dB 
(for a real PB that means AdB = 20dB at  = 2 c)

Furthermore, the cut-off attenuation of the binomial 
filter or the ripple for the Chebyshev filter must be 
assigned. For example for ’ = 1 the attenuation must be 
AdB = 3dB 
(for a real PB that means to have ACdB = 3dB at  = c)

For the sizing of the filter it is possible to proceed 
analytically observing that having ACdB (’ = 1) = 3dB means 
K = 1; at this point, with reference to a binomial filter, we 
have AdB = 10log10 [1 + (’)2N] and we can vary N until we have 
AdB(’ = 2) > 20dB. In this way, proceeding by step, we can 
find N 

Finally we can use analytical formulas present in literature 
(*) which, given N, allow us to calculate g0, g1, ..., gN + 1

This procedure is too rigorous and it is easier to use graphs 
or tables

In particular, the graph in Fig. 1 allows to determine the 
number of elements of a binomial filter based on the 
specifications

(*) G.L. Mattei, L. Young and E.M.T. Jones, Microwave filters, Impedance-Matching

Networks and Coupling Structrures, Artech House, 1980
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Figure 1

Binomial Filter, ACdB = 3

The graph in Figure refers to the case ACdB = 3dB; on 
specific texts, such as the one mentioned above, there
are similar ones for other ACdB values

In the considered example we have ’ = 2 and 
therefore ’ - 1 = 1. From the graph of Fig. 1 we see
that to have AdB > 20 dB, we have to choose N = 4

Using the table in Fig. 2 (valid for ACdB = 3dB) the 
values of the 4 reactive elements (g1, g2, g3, g4) that
make up the filter can be obtained

For binomial filters it is always g0 = 1 and gN + 1 = 1
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N g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11

1 2.0000 1.0000

2 1.4142 1.4142 1.0000

3 1.0000 2.0000 1.0000 1.0000

4 0.7654 1.8478 1.8478 0.7654 1.0000

5 0.6180 1.6180 2.0000 1.6180 0.6180 1.0000

6 0.5176 1.4142 1.9318 1.9318 1.4142 0.5176 1.0000

7 0.4450 1.2470 1.8019 2.0000 1.8019 1.2470 0.4450 1.000

8 0.3902 1.1111 1.6629 1.9615 1.9615 1.6629 1.1111 0.3902 1.0000

9 0.3473 1.0000 1.5321 1.8794 2.0000 1.8794 1.5321 1.0000 0.3473 1.0000

10 0.3129 0.9080 1.4142 1.7820 1.9754 1.9754 1.7820 1.4142 0.9080 0.3129 1.0000

Binomial Filter, ACdB = 3

Figure 2

If the PLR of the filter thus obtained is evaluated, we
found:

PLR (’) = 1 + (’)8

that is analogous to that theoretically fixed for 
binomial filters

A similar approach can be used for the design of 
Chebyshev filters

The corresponding graphs and tables are shown in Fig. 3 
and Fig. 4 for filters with ripple of 0.5 and 3 dB 
respectively

For these filters we have g0 = 1 while gN + 1 is equal to 1 
for odd N but different from 1 for even N
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Figure 3

Chebyshev Filter, ACdB = 0.5

Figure 4

Chebyshev Filter, ACdB = 3
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(a)

N g1 g2 g3 g4

0.5 dB

g5

Ripple

g6 g7 g8 g9 g10 g11

1 0.6986 1.0000

2 1.4029 1.7071 1.9841

3 1.5963 1.0967 1.5963 1.0000

4 1.6703 1.1926 2.3661 0.8419 1.9841

5 1.7058 1.2296 2.5408 1.2296 1.7058 1.0000

6 1.7254 1.2479 2.6064 1.3137 2.4758 0.5696 1.9841

7 1.7372 1.2583 2.6381 1.3444 2.6381 1.2583 1.7372 1.0000

8 1.7451 1.2647 2.6564 1.3590 2.6964 1.3389 2.5093 0.8796 1.9841

9 1.7504 1.2690 2.6678 1.3673 2.7329 1.3673 2.6678 1.2690 1.7504 1.0000

10 1.7543 1.2721 2.6754 1.3725 2.7392 1.3806 2.7231 1.3485 2.5329 0.8842 1.9841

Chebyshev Filter, ACdB = 0.5

Figure 5

N g1 g2 g3 g4

3.0 dB

g5

Ripple

g6 g7 g8 g9 g10 g11

1 1.9953 1.0000

2 3.1013 0.5339 5.8095

3 3.3487 0.7117 3.3487 1.0000

4 3.4389 0.7483 4.3471 0.5920 5.8095

5 3.4817 0.7618 4.5381 0.7618 3.4817 1.0000

6 3.5045 0.7685 4.6061 0.7929 4.4641 0.6033 5.8095

7 3.5182 0.7723 4.6386 0.8039 4.6386 0.7723 3.5182 1.0000

8 3.5277 0.7745 4.6575 0.8089 4.6990 0.8018 4.4990 0.6073 5.8095

9 3.5340 0.7760 4.6692 0.8118 4.7272 0.8118 4.6692 0.7760 3.5340 1.0000

10 3.5384 0.7771 4.6768 0.8136 4.7425 0.8164 4.7260 0.8051 4.5142 0.6091 5.8095

Chebyshev Filter, ACdB = 3

Figure 6
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Dimensioning of the real filter

In the LPP circuit the reactances are dimensionless 
(normalized with respect to R0). To obtain physical 
quantities they must be denormalized with respect to 
the impedance, as well as, with respect to pulsation

This operation can be performed in two consecutive 
steps. In the first step we denormalized with respect 
to the impedance and in the second with respect to the 
frequency

The denormalization with respect to the impedance is 
carried out by multiplying or dividing the dimensionless 
parameter by the reference impedance R0 = 50:

L’K = R0 LK = R0 gK [] 

C’K = 
CK

R0
= 

gK

R0
[S] 

R'K = RKR0 = gKR0 [] 

G'K = 
GK

R0
= 

gK

R0
[S]

Denormalization with respect to frequency is carried out 
using the transformations previously introduced
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Low pass filters
For the low pass circuit we have 𝜔′ = 


𝐶

so:

X'K = 𝜔′ L’K = 

𝐶

L’K []

this is equivalent to having an inductance:

L‘’K = 
L’K
𝐶

= 
R0 LK
2 f𝐶

= 
R0 gK

2 f𝐶
[H]

Similarly we have:

B'K = 𝜔′ C’K = 

𝐶

C’K []

and this is equivalent to a capacitance

C‘’K = 
C’K
𝐶

= 
CK

R02f𝐶
= 

gK

R02 f𝐶
[F]

In this way the capacitance and inductance values to be inserted in 
the filter network are univocally determined

With reference to the high pass we have: 𝜔′ = -
𝐶


from which follows:

X'K = 𝜔′ L’K =-
𝐶


L’K []

This reactance is equivalent to a capacitance of value:

C‘’K = 
1

L’K𝐶
= 

1
R0 gK2f𝐶

[F]

So the inductor turns into a capacitor.
Likewise, for the capacitor we have:

B'K = 𝜔′ C’K =-
𝐶


C’K []

This susceptibility corresponds to that of an inductor, therefore the 
capacitor is transformed into an inductor of value:

L‘’K = 
1

L’K𝐶
=

R0
gK2f𝐶

[H] 

High pass filters
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With reference to the band pass, we have: 𝜔′ = 
𝜔0

(𝜔2 −𝜔1)

𝜔

𝜔0
−

𝜔0

𝜔

and therefore we have:

X'K = 𝜔′ L’K = 
𝜔0

(𝜔2 −𝜔1)

𝜔

𝜔0
−

𝜔0

𝜔
L’K =

= 
𝜔L’K

(𝜔2 −𝜔1)
-

𝜔0
2

(𝜔2 −𝜔1)

L’K
𝜔

= 𝜔 L’’K -
1

𝜔C’’K

where:

L‘’K = 
L’K

𝜔2 −𝜔1
= 
R0 gK

𝜔2 −𝜔1
[H]

C‘’K = 
𝜔2 −𝜔1

𝜔0
2 L’K

=  
𝜔2 −𝜔1

𝜔0
2 R0 gK

[F]

therefore the inductor is transformed into a series of a capacitor and an 
inductor

Band pass filters

Similarly, starting from:

B'K = 𝜔′ C’K = 
𝜔0

(𝜔2 −𝜔1)

𝜔

𝜔0
−

𝜔0

𝜔
C’K

We found:

C‘’K = 
gK

R0(𝜔2 −𝜔1)
[F]

L‘’K =  
(𝜔2 −𝜔1)R0

𝜔0
2 gK

[H]

Thus the capacor is transformed into the parallel of a capacor and an 
inductor
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Suppose we want to design a maximally flat low pass 
filter with a cutoff frequency of 2 GHz and an 
attenuation of at least 15 dB at a frequency of 3 GHz. We
want to calculate and graph the amplitude response for 
frequencies from 0 to 4 GHz, and compare it with a filter
of the same order with constant ripple (3.0 dB ripple)

Initially the order N satisfying the specification of the 
attenuation at 3 GHz is evaluated. Since we have at 3 GHz 

𝐶

- 1 = 0.5, from Fig. 1 we see that N = 5 is sufficient. 

Then from the table in Fig. 2 the values of the elements
of the prototype are obtained:

g1 = 0.618, g2 = 1.618, g3 = 2.000, g4 = 1.618, g5 = 0.618

Thus the previous equations can be used to obtain the 
denormalized values of the elements for the circuit and 
we obtain:

C’’1 = 0.984 pF, L’’2 = 6.438 nH, C’’3 = 3.193 pF,

L’’4 = 6.438 nH, C’’5 = 0.984 pF

The final filter circuit was implemented on a commercial 
CAD (MicrowaveOfficeTM) and is shown in the following
figure

CAP

C=
ID=

0.984 pF
C1 

CAP

C=
ID=

3.183 pF
C2 

CAP

C=
ID=

0.984 pF
C3 

IND

L=
ID=

6.438 nH
L1 

IND

L=
ID=

6.438 nH
L2 

PORT

Z=
P=

50 Ohm
1 

PORT

Z=
P=

50 Ohm
2 
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Similarly, the values of the components for the 
constant ripple filter, for N = 5, can be determined
from Fig. 3 and we have:

C′′1 = 5.539 pF, L’’2 = 3.024 nH, C’’3 = 7.220 pF, 

L’’4 = 3.024 nH, C’’5 = 5.539 pF

The results of the amplitude for these two filters, 
obtained with the CAD, are shown in the next figure. 
These results clearly show the compromises associated
with the two types of filters.

The amplitude response of the constant ripple filter has 
the best slope at the cut-off. The maximally flat filter 
response has the flattest attenuation characteristics in 
the pass band, but a slightly lower slope at the cut off
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Suppose we want to design a band pass filter that has a 
constant ripple response of 0.5 dB. The central frequency
is 1 GHz, the bandwidth is 10% (f1 = 950 MHz, f2 = 1050 
MHz, f0 = 1 GHz), moreover,  A = 15 dB at f = 1.1 GHz.
We have ’ = 2 and N = 3. From the table in Fig. 4 we have
that the values of the elements of the prototype circuit are:

g1 = 1.5963, g2 = 1.0967, g3 = 1.5963

Thus the design equations give the following capacitance and 
inductance values

L’’1 = 127.0 nH C’’1 = 0.199 pF
L’’2 = 0.726 nH C’’2 = 34.91 pF
L’’3 = 127.0 nH C’’3 = 0.199 pF

The circuit was implemented with MicrowaveOfficeTM and 
is shown in the Fig (a). The amplitude response obtained with 
the CAD is shown in Fig. (b)
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Filter Realization on 
microstrip

Filters seen so far work well at low frequencies where it is
possible to realize the desired values of L and C with 
lumped elements. At high frequencies inductances and 
capacities are realized with distributed elements

With reference to the microstrip technology, low-pass 
filters can be realised based on Richard's transformations
and Kuroda's identities or using short low and high 
impedance lines that behave like series inductances or 
parallel capacitances

With other techniques it is also possible to realise high 
pass filters, and band pass filters. However, we are not
going to deal with these techniques and they are properly
addressed in other textbooks, see for example:
G.L. Mattei, L. Young and E.M.T. Jones, Microwave filters, Impedance-Matching

Networks and Coupling Structrures, Artech House, 1980
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Commensurate filters

Richard's transformations are based on the relations of 
the normalized impedances of a line section closed on a 
short circuit or on an open circuit, given by:

መ𝑍𝐼𝑁= j መ𝑍𝐶tan(l) = j መ𝑍𝐶tan() 

෠𝑌𝐼𝑁= j ෠𝑌𝐶tan(l) = j ෠𝑌𝐶tan() 

In the above equations we can choose ‘l’ in order to 
obtain the desired values of መ𝑍𝐼𝑁 and ෠𝑌𝐼𝑁 and therefore 
of LK and CK; it is more appropriate, however, to work 
with commensurate lines, that is, with lines having all the 
same length (this makes the filter response periodic)

Richard Transformations
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Then we set l = 
𝜆

8
(for  = C) from which it follows:

𝛽𝑙 =
2𝜋

𝜆

𝜆

8
= 
𝜋

4

and therefore:
tan(𝛽𝑙) = 1

So choosing
መ𝑍𝐼𝑁= j መ𝑍𝐶 = j ’ LK = j ’ gK

෠𝑌𝐼𝑁= j ෠𝑌𝐶 = j ’ CK = j ’ gK

At the cut-off we have:
መ𝑍𝐼𝑁= j መ𝑍𝐶 = j LK = j gK

෠𝑌𝐼𝑁= j ෠𝑌𝐶 =j CK = j gK

And in conclusion we can set:

መ𝑍𝐶= LK = gK

෠𝑌𝐶= CK = gK

መ𝑍𝐼𝑁 coincides with the normalized impedance of an 
inductor of value LK = gK at the normalized pulsation 
’= 1 ( መ𝑍𝐼𝑁= j’LK)

෠𝑌𝐼𝑁 coincides with the normalized admittance of a 
capacior with value CK = gK at the normalized pulsation 
’= 1 ( ෠𝑌𝐼𝑁= j’CK)

Then, denormalizing with respect to the impedance R0 we 
have:

ZC = gK R0

YC = gK /R0
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The above relations underline the possibility of realizing 

inductance and capacitance values by simply using  
𝜆

8
lines 

closed on open or on short circuit with a suitable 
characteristic impedance which is linked to the gK

coefficients of the LPP filter

Obviously the circuit is equivalent to the theoretical one 
only for ’= 1 ( = C); moving away from C the response 
differs from that of the theoretical filter

Kuroda's identity allows to transform series stubs into
parallel stubs. In fact, stubs in parallel are simpler to make in 
microstrip

In particular it can be easily demonstrated by comparing the 
ABCD matrices of the two circuits of the following figure, 
that a series stub of length 'l' with characteristic impedance
Z1 closed on a short circuit, followed by a section of line with 
characteristic impedance Z2 of length 'l', is equivalent to a 
section of line with characteristic impedance n2Z1 with 

n2 = 1 + Z2 / Z1

of length 'l', followed by an open  stub in parallel with 
characteristic impedance n2Z2 of length 'l' and terminated on 
an open circuit

Kuroda Identity 
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Z1

l

l
l

l

Z2
n2Z1

n2Z2

Suppose we want to design a low pass filter using
microstrip lines. The specifications are: 4 GHz cut-
off frequency, third order, and a 3 dB constant
ripple characteristic

From the table of Fig. 6 the normalized values of the 
elements of the low pass prototype are: 

g1 = 3.3487, g2 = 0.7117, g3 = 3.3487 

which are assigned to the circuit shown in figure (a) 
below. The next step is to use Richard's
transformation to convert the inductors in series
into stubs in series and the capacitors in parallel into
stubs in parallel, as shown in Fig. (b)



31
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According to the previous described theory, the 
normalized characteristic impedance of the stub in 
series (inductor) is g1, and the normalized characteristic
impedance of a stub in parallel (capacitor) is 1/g2

For the synthesis of commensurate lines, all the stubs

are 
𝜆

8
long at  = C (it is generally very convenient to 

work with normalized quantities up to the last step in 
the project)

The stubs in series of Fig. (b) would be very difficult to 
implement in microstrip, so Kuroda's identity is used to 
transform them into parallel stubs
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First, unitary elements are added to both ends of the 
filter, as shown in Fig. (c)

These redundant elements have no effect on the 
performance of the filter because they are adapted
with the source and the load (Z0 = 1) 

We can then apply Kuroda's identity as seen above to 
both ends of the filter. In both cases we have:

The result is shown in the Fig (c)
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(d)



33

Finally, the circuit is scaled in frequency and impedance, 
which simply implies multiplying the normalised
impedances by 50, and fixing the lines and stubs long 
/8 at 4 GHz. The final circuit is shown in Fig. (d), and 
the corresponding microstrip layout in Fig. (e) (for a 
254 m RO4003 substrate)

The calculated amplitude response is plotted in Fig. (f), 
together with the response achieved by using lumped 
elements. It can be noted that the features are very
similar under 4 GHz, but the distributed element filter
has a more defined cut off 

Extending the frequency analysis, we note that the 
distributed element filter has a response that is
repeated every 16 GHz, as a  consequence of the 
periodic nature of Richard's transformation
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Step filters

An alternative technique for the synthesis of a low
pass filter is to use a scale network. This network is
based on the following property

The input inpedance of a line of lenght l is given by:

𝑍𝐼𝑁 = 𝑍𝐶
𝑍𝐿 cos 𝛽𝑙 + 𝑗𝑍𝐶 𝑠𝑒𝑛𝛽𝑙

𝑍𝐶 cos 𝛽𝑙 + 𝑗𝑍𝐿 𝑠𝑒𝑛𝛽𝑙

For a short line (l << 𝜆 / 10) closed on a load with a 
magnitude impedance much lower than the line 
characteristic impedance(ZL  << ZC) we have:

𝑍𝐼𝑁 = 𝑍𝐶
𝑍𝐿 +𝑗𝑍𝐶𝛽𝑙

𝑍𝐶+𝑗𝑍𝐿𝛽𝑙
= 𝑍𝐿 +𝑗𝑍𝐶𝛽𝑙 =𝑍𝐿 +𝑗𝑙

The line behaves like an inductor in series with the 
load and with value L = ZCl / c
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Similarly, a short line closed on a load with a 
magnitude impedance is much greather than the line 
characteristic impedance(ZL  >> ZC) behaves like a 
capacitor in parallel with the load and with value
C = YCl / c

For example, one can suppose for low-impedance lines
ZC = ZL and for high-impedance lines ZC = ZH

ZC ZL  ZL

L

ZC ZL  ZL
C

Therefore, with reference to capacitor, we have:

𝐶 =
𝑌𝐶𝑙

𝑐
= 

1

𝑍𝐿

1

𝑐

Fixed ZL, the only parameter to act on is l, and we have:

𝜃 = 𝛽𝑙 = 𝛽 𝐶 𝑍𝐿 c = 
𝑐

𝑐
𝐶 𝑍𝐿 c =𝑐𝐶 𝑍𝐿 c

But: C = 
gK

R0𝑐

then:

𝛽𝑙 =
𝑐 gK𝑍𝐿

R0𝑐
=  

gK𝑍𝐿

R0

Similarly for the inductors we have:

𝛽𝑙 =
gKR0

𝑍𝐻
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Suppose we want to design a low pass filter that has a 
maximally flat response and a 5.5 GHz cutoff frequency
and that has more than 10dB of attenuation at 7 GHz

Suppose further that the highest line impedance
practically available ( ZH) is 75 , and the lowest (ZL) 15 
At 7 GHz we have:


𝐶

- 1 = 7
5.5

- 1 = 0.273

therefore Fig. 2 tells us that N = 5 provides the necessary
attenuation at 7 GHz

From the Table of Fig. 2 the values of the elements of 
the prototype are obtained:

g1 = 0.618, g2 = 1.618, g3 = 2, g4 = 1.618, g5 = 0.618

Subsequently, using the previous results we have:
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The physical circuit is shown in the following Fig (a) while
the final realization on microstrip is shown in Fig. (b) 
where the wide sections have ZL = 15  while the narrow
ones ZH = 75 

Note that Fig. (c) shows the filter attenuation compared
with the attenuation of a corresponding filter with 
discrete elements. The trends in the pass band are very
similar, but the circuit with discrete elements has
greater attenuation at higher frequencies. This is due to 
the fact that the elements of the step filter deviate 
significantly from the values of the discrete elements at
higher frequencies. The step filter can also have other
bands passing at higher frequencies, but the response will
not be perfectly periodic because the lines are not
commensurate
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